A QM/MD Coupling Method to Model the Ion-Induced Polarization of Graphene

被引:27
作者
Elliott, Joshua D. [1 ]
Troisi, Alessandro [2 ]
Carbone, Paola [1 ]
机构
[1] Univ Manchester, Dept Chem Engn & Analyt Sci, Manchester M13 9PL, Lancs, England
[2] Univ Liverpool, Dept Chem, Liverpool L69 7ZD, Merseyside, England
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会;
关键词
MOLECULAR-ORBITAL METHODS; BASIS-SET; WATER; CARBON; DYNAMICS; SUPERCAPACITOR; SIMULATIONS; INTERFACE; BINDING; IMPLEMENTATION;
D O I
10.1021/acs.jctc.0c00239
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report a new Quantum Mechanical/Molecular Dynamics (QM/MD) simulation loop to model the coupling between the electron and atom dynamics in solid/liquid interfacial systems. The method can describe simultaneously both the quantum mechanical surface polarizability emerging from the proximity to the electrolyte and the electrolyte structure and dynamics. In the current setup, Density Functional Tight Binding calculations for the electronic structure calculations of the surface are coupled with classical molecular dynamics to simulate the electrolyte solution. The reduced computational cost of the QM part makes the coupling with a classical simulation engine computationally feasible and allows simulation of large systems for hundreds of nanoseconds. We tested the method by simulating both a noncharged graphene flake and a noncharged and charged infinite graphene sheet immersed in an NaCl electrolyte solution. We found that, when no bias is applied, ions preferentially remained in solution, and only cations are mildly attracted to the surface of the graphene. This preferential adsorption of cations vs anions seems to persist also when the surface is moderately charged and rules out any substantial ions/surface charge transfer.
引用
收藏
页码:5253 / 5263
页数:11
相关论文
共 76 条
[1]   DFTB+, a sparse matrix-based implementation of the DFTB method [J].
Aradi, B. ;
Hourahine, B. ;
Frauenheim, Th. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2007, 111 (26) :5678-5684
[2]   Carbon-based electronics [J].
Avouris, Phaedon ;
Chen, Zhihong ;
Perebeinos, Vasili .
NATURE NANOTECHNOLOGY, 2007, 2 (10) :605-615
[3]  
Balog R, 2010, NAT MATER, V9, P315, DOI [10.1038/nmat2710, 10.1038/NMAT2710]
[4]   Basis set effects on the geometry of C96H24 [J].
Bauschlicher, Charles W., Jr. .
CHEMICAL PHYSICS LETTERS, 2016, 665 :100-104
[5]   Tunable band gap and magnetic ordering by adsorption of molecules on graphene [J].
Berashevich, Julia ;
Chakraborty, Tapash .
PHYSICAL REVIEW B, 2009, 80 (03)
[6]   GROMACS - A MESSAGE-PASSING PARALLEL MOLECULAR-DYNAMICS IMPLEMENTATION [J].
BERENDSEN, HJC ;
VANDERSPOEL, D ;
VANDRUNEN, R .
COMPUTER PHYSICS COMMUNICATIONS, 1995, 91 (1-3) :43-56
[7]   THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS [J].
BERENDSEN, HJC ;
GRIGERA, JR ;
STRAATSMA, TP .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (24) :6269-6271
[8]   SELF-CONSISTENT MOLECULAR-ORBITAL METHODS .21. SMALL SPLIT-VALENCE BASIS-SETS FOR 1ST-ROW ELEMENTS [J].
BINKLEY, JS ;
POPLE, JA ;
HEHRE, WJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1980, 102 (03) :939-947
[9]   Key role of electrostatic interactions in bacteriorhodopsin proton transfer [J].
Bondar, AN ;
Fischer, S ;
Smith, JC ;
Elstner, M ;
Suhai, S .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (44) :14668-14677
[10]   Can coordinate driving describe proton transfer coupled to complex protein motions? [J].
Bondar, N ;
Elstner, M ;
Fischer, S ;
Smith, JC ;
Suhai, S .
PHASE TRANSITIONS, 2004, 77 (1-2) :47-52