Zero-shot Image Categorization by Image Correlation Exploration

被引:10
|
作者
Gao, LianLi [1 ]
Song, Jingkuan [2 ]
Shao, Junming [1 ]
Zhu, Xiaofeng [3 ]
Shen, Heng Tao [4 ]
机构
[1] Univ Elect Sci & Technol China, Chengdu, Peoples R China
[2] Univ Trento, Trento, Italy
[3] Guangxi Normal Univ, Guilin, Guangxi, Peoples R China
[4] Univ Queensland, Brisbane, Qld 4072, Australia
关键词
attributes; image categorization; zero-shot learning;
D O I
10.1145/2671188.2749309
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The problem of image categorization from zero or only a few training examples, called zero-shot learning, occurs frequently, but it has hardly been studied in computer vision research. To tackle this problem, mid-level semantic attributes are introduced to identify image categories. For example, one can construct a classifier for the giant panda category by enumerating its attributes (e.g., black, white and four-footed) even without providing giant panda training images. Recently, several studies have investigated to learn attribute classifiers, based on which new classes can be detected. However, an often-encountered problem is the limited number of training data due to the time-consuming manual annotation of the attributes. Also, using single feature is hard to detect some attributes, e.g., the HSV feature is not robust enough to predict 'tusk' or 'flies' attributes. In this paper, we propose a unified semi-supervised learning (SSL) framework that learns the attribute classifiers by utilizing multiple feature and exploring the correlations between images. Specifically, we learn an optimal graph which embeds the relationships among the data points more accurately. Then, this graph is used to generate a geometrical regularizers for a semi-supervised learning model to learn the attribute classifier by utilizing both labeled and unlabeled images. Afterward, new classes can be detected based on their attribute representation. The use of SSL can boost the performances of attribute classifiers with very few training examples, and the adoption of multiple features makes the attribute prediction more robust. Experimental results on a series of real benchmark data sets suggest that semi-supervised learning do enhance the performances of attribute prediction and zero-shot categorization, compared with state-of-the-art methods.
引用
收藏
页码:487 / 490
页数:4
相关论文
共 50 条
  • [11] Zero-Shot Image Classification Based on Attribute
    Zhang, Wei
    Chen, Wenbai
    Chen, Xiangfeng
    Han, Hu
    2017 INTERNATIONAL CONFERENCE ON SECURITY, PATTERN ANALYSIS, AND CYBERNETICS (SPAC), 2017, : 25 - 30
  • [12] Gaze Embeddings for Zero-Shot Image Classification
    Karessli, Nour
    Akata, Zeynep
    Schiele, Bernt
    Bulling, Andreas
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 6412 - 6421
  • [13] Zero-Shot Text-to-Image Generation
    Ramesh, Aditya
    Pavlov, Mikhail
    Goh, Gabriel
    Gray, Scott
    Voss, Chelsea
    Radford, Alec
    Chen, Mark
    Sutskever, Ilya
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [14] Multimodal Ensembling for Zero-Shot Image Classification
    Hickmon, Javon
    THIRTY-EIGTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 21, 2024, : 23747 - 23749
  • [15] Method for improving zero-shot image classification
    Chen, Xiangfeng
    Chen, Wenbai
    Zhang, Chong
    Lv, Mengyao
    Han, Hu
    JOURNAL OF ENGINEERING-JOE, 2018, (16): : 1688 - 1691
  • [16] Zero-Shot Image Dehazing Using Pseudo Atmospheric Light Image
    Jo, Eunsung
    Park, Eunpil
    Sim, Jae-Young
    2022 IEEE 24TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2022,
  • [17] Enhanced VAEGAN: a zero-shot image classification method
    Ding, Bo
    Fan, Yufei
    He, Yongjun
    Zhao, Jing
    APPLIED INTELLIGENCE, 2023, 53 (08) : 9235 - 9246
  • [18] Zero-Shot Composed Image Retrieval with Textual Inversion
    Baldrati, Alberto
    Agnolucci, Lorenzo
    Bertini, Marco
    Del Bimbo, Alberto
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 15292 - 15301
  • [19] A Zero-Shot Framework for Sketch Based Image Retrieval
    Yelamarthi, Sasi Kiran
    Reddy, Shiva Krishna
    Mishra, Ashish
    Mittal, Anurag
    COMPUTER VISION - ECCV 2018, PT IV, 2018, 11208 : 316 - 333
  • [20] Zero-shot image classification based on factor space
    Guan, Shijie
    Guan, Qixue
    Yin, Anqi
    International Journal of Web Engineering and Technology, 2021, 16 (01) : 1 - 29