An Adaptive Conservative Finite Volume Method for Poisson-Nernst-Planck Equations on a Moving Mesh

被引:12
|
作者
Cao, Xiulei [1 ]
Huang, Huaxiong [1 ,2 ]
机构
[1] York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
[2] Fields Inst Res Math Sci, Toronto, ON M5T 3J1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Poisson-Nernst-Planck; finite volume method; adaptive moving mesh; mass conservation; DIFFERENCE METHOD; DISCRETIZATION; TRANSPORT; CHANNELS; SYSTEM;
D O I
10.4208/cicp.OA-2018-0134
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we present a finite volume method for solving Poisson-Nernst-Planck (PNP) equations in one spatial dimension. To reduce computational cost, an adaptive moving mesh strategy is employed in order to resolve thin Debye layers near the boundary. In addition to the standard monitor functions, we propose two new ones for the moving mesh partial differential equations to improve the accuracy of the numerical solution. The method guarantees the strict mass conservation. We have proved that the scheme maintains positivity on the adaptive moving mesh which has not been done for PNP.
引用
收藏
页码:389 / 412
页数:24
相关论文
共 50 条
  • [41] Banach spaces-based mixed finite element methods for the coupled Navier-Stokes and Poisson-Nernst-Planck equations
    Correa, Claudio I.
    Gatica, Gabriel N.
    Henriquez, Esteban
    Ruiz-Baier, Ricardo
    Solano, Manuel
    CALCOLO, 2024, 61 (02)
  • [42] An iteration solver for the Poisson-Nernst-Planck system and its convergence analysis
    Liu, Chun
    Wang, Cheng
    Wise, Steven M.
    Yue, Xingye
    Zhou, Shenggao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 406
  • [43] A positivity-preserving and free energy dissipative hybrid scheme for the Poisson-Nernst-Planck equations on polygonal and polyhedral meshes
    Su, Shuai
    Tang, Huazhong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 108 : 33 - 48
  • [44] Modified Poisson-Nernst-Planck theory for ion transport in polymeric electrolytes
    van Soestbergen, M.
    Biesheuvel, P. M.
    Rongen, R. T. H.
    Ernst, L. J.
    Zhang, G. Q.
    JOURNAL OF ELECTROSTATICS, 2008, 66 (11-12) : 567 - 573
  • [45] Poisson-Nernst-Planck model for an ionic transistor based on a semiconductor membrane
    Nikolaev, Alexey
    Gracheva, Maria E.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2014, 13 (04) : 818 - 825
  • [46] A complete analysis of a classical Poisson-Nernst-Planck model for ionic flow
    Liu, Weishi
    Xu, Hongguo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (04) : 1192 - 1228
  • [47] Effects of ion sizes on Poisson-Nernst-Planck systems with multiple ions
    Lin, Guojian
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (11) : 11842 - 11868
  • [48] Efficient, Positive, and Energy Stable Schemes for Multi-D Poisson-Nernst-Planck Systems
    Liu, Hailiang
    Maimaitiyiming, Wumaier
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 87 (03)
  • [49] The Kramers-Kronig relations for usual and anomalous Poisson-Nernst-Planck models
    Evangelista, Luiz Roberto
    Lenzi, Ervin Kaminski
    Barbero, Giovanni
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2013, 25 (46)
  • [50] Poisson-Nernst-Planck Systems for Narrow Tubular-Like Membrane Channels
    Liu, Weishi
    Wang, Bixiang
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2010, 22 (03) : 413 - 437