An Adaptive Conservative Finite Volume Method for Poisson-Nernst-Planck Equations on a Moving Mesh

被引:12
|
作者
Cao, Xiulei [1 ]
Huang, Huaxiong [1 ,2 ]
机构
[1] York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
[2] Fields Inst Res Math Sci, Toronto, ON M5T 3J1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Poisson-Nernst-Planck; finite volume method; adaptive moving mesh; mass conservation; DIFFERENCE METHOD; DISCRETIZATION; TRANSPORT; CHANNELS; SYSTEM;
D O I
10.4208/cicp.OA-2018-0134
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we present a finite volume method for solving Poisson-Nernst-Planck (PNP) equations in one spatial dimension. To reduce computational cost, an adaptive moving mesh strategy is employed in order to resolve thin Debye layers near the boundary. In addition to the standard monitor functions, we propose two new ones for the moving mesh partial differential equations to improve the accuracy of the numerical solution. The method guarantees the strict mass conservation. We have proved that the scheme maintains positivity on the adaptive moving mesh which has not been done for PNP.
引用
收藏
页码:389 / 412
页数:24
相关论文
共 50 条
  • [31] Very weak solutions for Poisson-Nernst-Planck system
    Hineman, Jay L.
    Ryham, Rolf J.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 115 : 12 - 24
  • [32] Global existence of solutions for the Poisson-Nernst-Planck system with steric effects
    Hsieh, Chia-Yu
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 50 : 34 - 54
  • [33] Positivity-preserving third order DG schemes for Poisson-Nernst-Planck equations
    Liu, Hailiang
    Wang, Zhongming
    Yin, Peimeng
    Yu, Hui
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 452
  • [34] Convergence and superconvergence analysis for a mass conservative, energy stable and linearized BDF2 scheme of the Poisson-Nernst-Planck equations
    Li, Minghao
    Shi, Dongyang
    Li, Zhenzhen
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 140
  • [35] Positivity preserving finite difference methods for Poisson-Nernst-Planck equations with steric interactions: Application to slit-shaped nanopore conductance
    Ding, Jie
    Wang, Zhongming
    Zhou, Shenggao
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 397
  • [36] A fully discrete positivity-preserving and energy-dissipative finite difference scheme for Poisson-Nernst-Planck equations
    Hu, Jingwei
    Huang, Xiaodong
    NUMERISCHE MATHEMATIK, 2020, 145 (01) : 77 - 115
  • [37] ERROR ANALYSIS OF VIRTUAL ELEMENT METHODS FOR THE TIME-DEPENDENT POISSON-NERNST-PLANCK EQUATIONS
    Yang, Ying
    Liu, Ya
    Liu, Yang
    Shu, Shi
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2025, 43 (03): : 731 - 770
  • [38] Near- and far-field expansions for stationary solutions of Poisson-Nernst-Planck equations
    Lyu, Jhih-Hong
    Lee, Chiun-Chang
    Lin, Tai-Chia
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (13) : 10837 - 10860
  • [39] Residual Type a Posteriori Error Estimates for the Time-Dependent Poisson-Nernst-Planck Equations
    Zhu, Wanwan
    Yang, Ying
    Ji, Guanghua
    Lu, Benzhuo
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 90 (01)
  • [40] A free energy satisfying discontinuous Galerkin method for one-dimensional Poisson-Nernst-Planck systems
    Liu, Hailiang
    Wang, Zhongming
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 328 : 413 - 437