An Adaptive Conservative Finite Volume Method for Poisson-Nernst-Planck Equations on a Moving Mesh

被引:12
|
作者
Cao, Xiulei [1 ]
Huang, Huaxiong [1 ,2 ]
机构
[1] York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
[2] Fields Inst Res Math Sci, Toronto, ON M5T 3J1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Poisson-Nernst-Planck; finite volume method; adaptive moving mesh; mass conservation; DIFFERENCE METHOD; DISCRETIZATION; TRANSPORT; CHANNELS; SYSTEM;
D O I
10.4208/cicp.OA-2018-0134
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we present a finite volume method for solving Poisson-Nernst-Planck (PNP) equations in one spatial dimension. To reduce computational cost, an adaptive moving mesh strategy is employed in order to resolve thin Debye layers near the boundary. In addition to the standard monitor functions, we propose two new ones for the moving mesh partial differential equations to improve the accuracy of the numerical solution. The method guarantees the strict mass conservation. We have proved that the scheme maintains positivity on the adaptive moving mesh which has not been done for PNP.
引用
收藏
页码:389 / 412
页数:24
相关论文
共 50 条
  • [21] An unconditionally energy stable linear scheme for Poisson-Nernst-Planck equations
    Qiao, Tian
    Qiao, Zhonghua
    Sun, Shuyu
    Zhou, Shenggao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 443
  • [22] A DECOUPLING TWO-GRID METHOD FOR THE STEADY-STATE POISSON-NERNST-PLANCK EQUATIONS
    Yang, Ying
    Lu, Benzhuo
    Xie, Yan
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2019, 37 (04) : 556 - 578
  • [23] New porous medium Poisson-Nernst-Planck equations for strongly oscillating electric potentials
    Schmuck, M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (02)
  • [24] ASYMPTOTIC ANALYSIS ON DIELECTRIC BOUNDARY EFFECTS OF MODIFIED POISSON-NERNST-PLANCK EQUATIONS
    Ji, Lijie
    Liu, Pei
    Xu, Zhenli
    Zhou, Shenggao
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2018, 78 (03) : 1802 - 1822
  • [25] Poisson-Nernst-Planck equations with steric effects - non-convexity and multiple stationary solutions
    Gavish, Nir
    PHYSICA D-NONLINEAR PHENOMENA, 2018, 368 : 50 - 65
  • [26] Analytical solution of the Poisson-Nernst-Planck equations for an electrochemical system close to electroneutrality
    Pabst, M.
    JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (22)
  • [27] Integral equation method for the 1D steady-state Poisson-Nernst-Planck equations
    Zhen Chao
    Weihua Geng
    Robert Krasny
    Journal of Computational Electronics, 2023, 22 : 1396 - 1408
  • [28] Self-energy-modified Poisson-Nernst-Planck equations: WKB approximation and finite-difference approaches
    Xu, Zhenli
    Ma, Manman
    Liu, Pei
    PHYSICAL REVIEW E, 2014, 90 (01):
  • [29] Integral equation method for the 1D steady-state Poisson-Nernst-Planck equations
    Chao, Zhen
    Geng, Weihua
    Krasny, Robert
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2023, 22 (05) : 1396 - 1408
  • [30] EXISTENCE THEORY FOR A POISSON-NERNST-PLANCK MODEL OF ELECTROPHORESIS
    Bedin, Luciano
    Thompson, Mark
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (01) : 157 - 206