Bose-Einstein condensates in optical lattices: the cubic-quintic nonlinear Schrodinger equation with a periodic potential

被引:36
作者
Kengne, E. [1 ,2 ]
Vaillancourt, R. [2 ]
Malomed, B. A. [3 ]
机构
[1] Univ Dschang, Fac Sci, Dept Math & Comp Sci, Douala, Cameroon
[2] Univ Ottawa, Fac Sci, Dept Math & Stat, Ottawa, ON K1N 6N5, Canada
[3] Tel Aviv Univ, Fac Engn, Sch Elect Engn, Dept Phys Elect, IL-69978 Tel Aviv, Israel
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1088/0953-4075/41/20/205202
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The cubic-quintic nonlinear Schrodinger equation with a periodic potential, which is expressed in terms of the Jacobian function dn, is used to model a Bose-Einstein condensate trapped in an optical lattice (in most cases, the dn potential is very close to the ordinary sinusoidal one). The quintic term in the equation represents either effects of three-body collisions (which is relevant in the case when the ordinary two-body collisions are very weak), or an effective deviation of the trapped condensate from the one-dimensionality. The cases of both repulsive and attractive two-body interactions are considered. The same model governs the planar propagation of light in waveguides with the cubic-quintic optical nonlinearity, the periodic potential being induced by transverse modulation of the refractive index. In the case of the attractive quintic term (which is always the case if it accounts for the residual non-one-dimensionality of the tightly trapped condensate), a new family of exact periodic solutions is constructed in terms of Jacobian elliptic functions. Using semi-analytical and numerical methods, a stability region for these periodic states is identified. The effect of boundaries is shown to be very weak.
引用
收藏
页数:9
相关论文
共 87 条
[71]   SELF-ACTION OF LIGHT-BEAMS IN NON-LINEAR MEDIA - SOLITON SOLUTIONS [J].
PUSHKAROV, KI ;
PUSHKAROV, DI ;
TOMOV, IV .
OPTICAL AND QUANTUM ELECTRONICS, 1979, 11 (06) :471-478
[72]   39K Bose-Einstein condensate with tunable interactions [J].
Roati, G. ;
Zaccanti, M. ;
D'Errico, C. ;
Catani, J. ;
Modugno, M. ;
Simoni, A. ;
Inguscio, M. ;
Modugno, G. .
PHYSICAL REVIEW LETTERS, 2007, 99 (01)
[73]   Resonant magnetic field control of elastic scattering in cold 85Rb [J].
Roberts, JL ;
Claussen, NR ;
Burke, JP ;
Greene, CH ;
Cornell, EA ;
Wieman, CE .
PHYSICAL REVIEW LETTERS, 1998, 81 (23) :5109-5112
[74]   Dynamically stabilized bright solitons in a two-dimensional Bose-Einstein condensate [J].
Saito, H ;
Ueda, M .
PHYSICAL REVIEW LETTERS, 2003, 90 (04) :4
[75]   Modulational instability and complex dynamics of confined matter-wave solitons [J].
Salasnich, L ;
Parola, A ;
Reatto, L .
PHYSICAL REVIEW LETTERS, 2003, 91 (08)
[76]   Bose-Einstein condensates under a spatially modulated transverse confinement [J].
Salasnich, L. ;
Cetoli, A. ;
Malomed, B. A. ;
Toigo, F. ;
Reatto, L. .
PHYSICAL REVIEW A, 2007, 76 (01)
[77]   Superposition in nonlinear wave and evolution equations [J].
Schuermann, H. W. ;
Serov, V. S. ;
Nickel, J. .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2006, 45 (06) :1093-1109
[78]   Traveling-wave solutions of the cubic-quintic nonlinear Schrodinger equation [J].
Schurmann, HW .
PHYSICAL REVIEW E, 1996, 54 (04) :4312-4320
[79]   Non-linear optical properties of chalcogenide glasses measured by Z-scan [J].
Smektala, F ;
Quemard, C ;
Couderc, V ;
Barthélémy, A .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2000, 274 (1-3) :232-237
[80]   Stability of the pulselike solutions of the quintic complex Ginzburg-Landau equation [J].
SotoCrespo, JM ;
Akhmediev, NN ;
Afanasjev, VV .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1996, 13 (07) :1439-1449