On divisibility of exponential sums of polynomials of special type over fields of characteristic 2

被引:3
|
作者
Bassalygo, L. A. [1 ]
Zinoviev, V. A. [1 ]
机构
[1] Russian Acad Sci, AA Kharkevich Inst Problems Informat Transmiss, Moscow 127994, Russia
关键词
Finite field; Polynomial; Exponential sum; Binary Kloosterman sum; Divisor 2(k) of Kloosterman sum; Zero of Kloosterman sum; KLOOSTERMAN SUMS;
D O I
10.1007/s10623-012-9669-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the divisibility by eight of exponential sums of several classes of functions over finite fields of characteristic two. For the binary classical Kloosterman sums K(a) over such fields we give a simple recurrent algorithm for finding the largest k, such that 2 (k) divides the Kloosterman sum K(a). This gives a simple description of zeros of such Kloosterman sums.
引用
收藏
页码:129 / 143
页数:15
相关论文
共 50 条
  • [1] On divisibility of exponential sums of polynomials of special type over fields of characteristic 2
    L. A. Bassalygo
    V. A. Zinoviev
    Designs, Codes and Cryptography, 2013, 66 : 129 - 143
  • [2] On divisibility of exponential sums over finite fields of characteristic 2
    Castro, FN
    Moreno, O
    FINITE FIELDS WITH APPLICATIONS TO CODING THEORY, CRYPTOGRAPHY AND RELATED AREAS, 2002, : 70 - 79
  • [3] Degree matrices and divisibility of exponential sums over finite fields
    Jianming Chen
    Wei Cao
    Archiv der Mathematik, 2010, 94 : 435 - 441
  • [4] Degree matrices and divisibility of exponential sums over finite fields
    Chen, Jianming
    Cao, Wei
    ARCHIV DER MATHEMATIK, 2010, 94 (05) : 435 - 441
  • [5] EXPONENTIAL SUMS WITH SPARSE POLYNOMIALS OVER FINITE FIELDS
    Shparlinski, Igor E.
    Wang, Qiang
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (02) : 976 - 987
  • [6] DIVISIBILITY OF EXPONENTIAL SUMS AND SOLVABILITY OF CERTAIN EQUATIONS OVER FINITE FIELDS
    Castro, Francis N.
    Rubio, Ivelisse
    Vega, Jose M.
    QUARTERLY JOURNAL OF MATHEMATICS, 2009, 60 (02): : 169 - 181
  • [7] Divisibility properties of Kloosterman sums over finite fields of characteristic two
    Charpin, Pascale
    Helleseth, Tor
    Zinoviev, Victor
    2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, : 2608 - +
  • [8] Closed formulas for exponential sums of symmetric polynomials over Galois fields
    Francis N. Castro
    Luis A. Medina
    L. Brehsner Sepúlveda
    Journal of Algebraic Combinatorics, 2019, 50 : 73 - 98
  • [9] Closed formulas for exponential sums of symmetric polynomials over Galois fields
    Castro, Francis N.
    Medina, Luis A.
    Sepulveda, L. Brehsner
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2019, 50 (01) : 73 - 98
  • [10] DEGREE MATRICES AND ESTIMATES FOR EXPONENTIAL SUMS OF POLYNOMIALS OVER FINITE FIELDS
    Cao, Wei
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (07)