Current induced torques and interfacial spin-orbit coupling: Semiclassical modeling

被引:422
|
作者
Haney, Paul M. [1 ]
Lee, Hyun-Woo [2 ,3 ]
Lee, Kyung-Jin [1 ,4 ,5 ,6 ]
Manchon, Aurelien [7 ]
Stiles, M. D. [1 ]
机构
[1] NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA
[2] Pohang Univ Sci & Technol, PCTP, Kyungbuk 790784, South Korea
[3] Pohang Univ Sci & Technol, Dept Phys, Kyungbuk 790784, South Korea
[4] Korea Univ, Dept Mat Sci & Engn, Seoul 136713, South Korea
[5] Korea Univ, KU KIST Grad Sch Converging Sci & Technol, Seoul 136713, South Korea
[6] Univ Maryland, Maryland Nanoctr, College Pk, MD 20742 USA
[7] KAUST, Core Labs, Thuwal 239556900, Saudi Arabia
关键词
DOMAIN-WALL MOTION; MAGNETIZATION DYNAMICS; MAGNETORESISTANCE;
D O I
10.1103/PhysRevB.87.174411
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In bilayer nanowires consisting of a ferromagnetic layer and a nonmagnetic layer with strong spin-orbit coupling, currents create torques on the magnetization beyond those found in simple ferromagnetic nanowires. The resulting magnetic dynamics appear to require torques that can be separated into two terms, dampinglike and fieldlike. The dampinglike torque is typically derived from models describing the bulk spin Hall effect and the spin transfer torque, and the fieldlike torque is typically derived from a Rashba model describing interfacial spin-orbit coupling. We derive a model based on the Boltzmann equation that unifies these approaches. We also consider an approximation to the Boltzmann equation, the drift-diffusion model, that qualitatively reproduces the behavior, but quantitatively differs in some regimes. We show that the Boltzmann equation with physically reasonable parameters can match the torques for any particular sample, but in some cases, it fails to describe the experimentally observed thickness dependencies.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Spin-orbit coupling induced demagnetization in Ni: Ab initio nonadiabatic molecular dynamics perspective
    Zheng, Zhenfa
    Zheng, Qijing
    Zhao, Jin
    PHYSICAL REVIEW B, 2022, 105 (08)
  • [42] Interfacial current-induced torques in Pt/Co/GdOx
    Emori, Satoru
    Bono, David C.
    Beach, Geoffrey S. D.
    APPLIED PHYSICS LETTERS, 2012, 101 (04)
  • [43] Anomalous and spin Hall effects in a magnetic tunnel junction with Rashba spin-orbit coupling
    Vedyayev, A. V.
    Titova, M. S.
    Ryzhanova, N. V.
    Zhuravlev, M. Ye.
    Tsymbal, E. Y.
    APPLIED PHYSICS LETTERS, 2013, 103 (03)
  • [44] Spin dynamics under local gauge fields in chiral spin-orbit coupling systems
    Tan, S. G.
    Jalil, M. B. A.
    Fujita, T.
    Liu, X. J.
    ANNALS OF PHYSICS, 2011, 326 (02) : 207 - 215
  • [45] Kerr rotation in Cu, Ag, and Au driven by spin accumulation and spin-orbit coupling
    Choi, Gyung-Min
    Cahill, David G.
    PHYSICAL REVIEW B, 2014, 90 (21)
  • [46] Spin Splitter Based on Magnetically Confined Semiconductor Microstructure Modulated by Spin-Orbit Coupling
    Lu, Maowang
    Chen, Saiyan
    Huang, Xinhong
    Zhang, Guilian
    IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2018, 6 (01): : 227 - 232
  • [47] Hyperfine interaction vs. spin-orbit coupling in organic semiconductors
    Niu, L. B.
    Chen, L. J.
    Chen, P.
    Cui, Y. T.
    Zhang, Y.
    Shao, M.
    Guan, Y. X.
    RSC ADVANCES, 2016, 6 (112): : 111421 - 111426
  • [48] Spin-orbit coupling and spin relaxation rate in singly charged π-conjugated polymer chains
    Rybicki, J.
    Nguyen, T. D.
    Sheng, Y.
    Wohlgenannt, M.
    SYNTHETIC METALS, 2010, 160 (3-4) : 280 - 284
  • [49] Current-induced spin torques in III-V ferromagnetic semiconductors
    Culcer, Dimitrie
    Lucassen, M. E.
    Duine, R. A.
    Winkler, R.
    PHYSICAL REVIEW B, 2009, 79 (15)
  • [50] z → -z Symmetry of Spin-Orbit Coupling and Weak Localization in Graphene
    McCann, Edward
    Fal'ko, Vladimir I.
    PHYSICAL REVIEW LETTERS, 2012, 108 (16)