Current induced torques and interfacial spin-orbit coupling: Semiclassical modeling

被引:422
|
作者
Haney, Paul M. [1 ]
Lee, Hyun-Woo [2 ,3 ]
Lee, Kyung-Jin [1 ,4 ,5 ,6 ]
Manchon, Aurelien [7 ]
Stiles, M. D. [1 ]
机构
[1] NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA
[2] Pohang Univ Sci & Technol, PCTP, Kyungbuk 790784, South Korea
[3] Pohang Univ Sci & Technol, Dept Phys, Kyungbuk 790784, South Korea
[4] Korea Univ, Dept Mat Sci & Engn, Seoul 136713, South Korea
[5] Korea Univ, KU KIST Grad Sch Converging Sci & Technol, Seoul 136713, South Korea
[6] Univ Maryland, Maryland Nanoctr, College Pk, MD 20742 USA
[7] KAUST, Core Labs, Thuwal 239556900, Saudi Arabia
关键词
DOMAIN-WALL MOTION; MAGNETIZATION DYNAMICS; MAGNETORESISTANCE;
D O I
10.1103/PhysRevB.87.174411
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In bilayer nanowires consisting of a ferromagnetic layer and a nonmagnetic layer with strong spin-orbit coupling, currents create torques on the magnetization beyond those found in simple ferromagnetic nanowires. The resulting magnetic dynamics appear to require torques that can be separated into two terms, dampinglike and fieldlike. The dampinglike torque is typically derived from models describing the bulk spin Hall effect and the spin transfer torque, and the fieldlike torque is typically derived from a Rashba model describing interfacial spin-orbit coupling. We derive a model based on the Boltzmann equation that unifies these approaches. We also consider an approximation to the Boltzmann equation, the drift-diffusion model, that qualitatively reproduces the behavior, but quantitatively differs in some regimes. We show that the Boltzmann equation with physically reasonable parameters can match the torques for any particular sample, but in some cases, it fails to describe the experimentally observed thickness dependencies.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Theory of spin torque due to spin-orbit coupling
    Manchon, A.
    Zhang, S.
    PHYSICAL REVIEW B, 2009, 79 (09)
  • [22] Giant Optical Polarization Rotation Induced by Spin-Orbit Coupling in Polarons
    Casals, Blai
    Cichelero, Rafael
    Garcia Fernandez, Pablo
    Junquera, Javier
    Pesquera, David
    Campoy-Quiles, Mariano
    Infante, Ingrid C.
    Sanchez, Florencio
    Fontcuberta, Josep
    Herranz, Gervasi
    PHYSICAL REVIEW LETTERS, 2016, 117 (02)
  • [23] Spin-Orbit Torques in Metallic Magnetic Multilayers: Challenges and New Opportunities
    Wang, Tao
    Xiao, John Q.
    Fan, Xin
    SPIN, 2017, 7 (03)
  • [24] Spin transfer and spin-orbit torques in in-plane magnetized (Ga,Mn)As tracks
    Thevenard, L.
    Boutigny, B.
    Gusken, N.
    Becerra, L.
    Ulysse, C.
    Shihab, S.
    Lemaitre, A.
    Kim, J. -V.
    Jeudy, V.
    Gourdon, C.
    PHYSICAL REVIEW B, 2017, 95 (05)
  • [25] Recent advances in spin-orbit torques: Moving towards device applications
    Ramaswamy, Rajagopalan
    Lee, Jong Min
    Cai, Kaiming
    Yang, Hyunsoo
    APPLIED PHYSICS REVIEWS, 2018, 5 (03):
  • [26] Inverse spin Hall effect from pulsed spin current in organic semiconductors with tunable spin-orbit coupling
    Sun, Dali
    van Schooten, Kipp J.
    Kavand, Marzieh
    Malissa, Hans
    Zhang, Chuang
    Groesbeck, Matthew
    Boehme, Christoph
    Vardeny, Z. Valy
    NATURE MATERIALS, 2016, 15 (08) : 863 - +
  • [27] Spin-orbit coupling induced spin polarisation in both magnetically and electrically modulated semiconductor heterostructure
    Liu, Xu-Hui
    Tan, Ming
    Gong, Yan-Jun
    Peng, Li
    PHILOSOPHICAL MAGAZINE LETTERS, 2020, 100 (05) : 213 - 223
  • [28] Absence of Dirac states in BaZnBi2 induced by spin-orbit coupling
    Ren, Weijun
    Wang, Aifeng
    Graf, D.
    Liu, Yu
    Zhang, Zhidong
    Yin, Wei-Guo
    Petrovic, C.
    PHYSICAL REVIEW B, 2018, 97 (03)
  • [29] Lattice-compliant simulations of antiferromagnetic textures and their response to spin-orbit torques
    Miltat, Jacques
    Thiaville, Andre
    PHYSICAL REVIEW B, 2022, 105 (01)
  • [30] Microscopic theory of diffusive spin current with spin-orbit interaction
    Hosono, Kazuhiro
    Yamaguchi, Akinobu
    Nozaki, Yukio
    Tatara, Gen
    PHYSICAL REVIEW B, 2011, 83 (14)