Current induced torques and interfacial spin-orbit coupling: Semiclassical modeling

被引:422
|
作者
Haney, Paul M. [1 ]
Lee, Hyun-Woo [2 ,3 ]
Lee, Kyung-Jin [1 ,4 ,5 ,6 ]
Manchon, Aurelien [7 ]
Stiles, M. D. [1 ]
机构
[1] NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA
[2] Pohang Univ Sci & Technol, PCTP, Kyungbuk 790784, South Korea
[3] Pohang Univ Sci & Technol, Dept Phys, Kyungbuk 790784, South Korea
[4] Korea Univ, Dept Mat Sci & Engn, Seoul 136713, South Korea
[5] Korea Univ, KU KIST Grad Sch Converging Sci & Technol, Seoul 136713, South Korea
[6] Univ Maryland, Maryland Nanoctr, College Pk, MD 20742 USA
[7] KAUST, Core Labs, Thuwal 239556900, Saudi Arabia
关键词
DOMAIN-WALL MOTION; MAGNETIZATION DYNAMICS; MAGNETORESISTANCE;
D O I
10.1103/PhysRevB.87.174411
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In bilayer nanowires consisting of a ferromagnetic layer and a nonmagnetic layer with strong spin-orbit coupling, currents create torques on the magnetization beyond those found in simple ferromagnetic nanowires. The resulting magnetic dynamics appear to require torques that can be separated into two terms, dampinglike and fieldlike. The dampinglike torque is typically derived from models describing the bulk spin Hall effect and the spin transfer torque, and the fieldlike torque is typically derived from a Rashba model describing interfacial spin-orbit coupling. We derive a model based on the Boltzmann equation that unifies these approaches. We also consider an approximation to the Boltzmann equation, the drift-diffusion model, that qualitatively reproduces the behavior, but quantitatively differs in some regimes. We show that the Boltzmann equation with physically reasonable parameters can match the torques for any particular sample, but in some cases, it fails to describe the experimentally observed thickness dependencies.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Interfacial spin-orbit torques
    Amin, V. P.
    Haney, P. M.
    Stiles, M. D.
    JOURNAL OF APPLIED PHYSICS, 2020, 128 (15)
  • [2] Ferrimagnetic Dynamics Induced by Spin-Orbit Torques
    Sala, Giacomo
    Gambardella, Pietro
    ADVANCED MATERIALS INTERFACES, 2022, 9 (36)
  • [3] Current-Induced Spin-Orbit Torques for Spintronic Applications
    Ryu, Jeongchun
    Lee, Soogil
    Lee, Kyung-Jin
    Park, Byong-Guk
    ADVANCED MATERIALS, 2020, 32 (35)
  • [4] Manipulating antiferromagnetic interfacial states by spin-orbit torques
    Zhang, E. Z.
    Deng, Y. C.
    Liu, X. H.
    Zhan, X. Z.
    Zhu, T.
    Wang, K. Y.
    PHYSICAL REVIEW B, 2021, 104 (13)
  • [5] Roles of Joule heating and spin-orbit torques in the direct current induced magnetization reversal
    Li, Dong
    Chen, Shiwei
    Zuo, Yalu
    Yun, Jijun
    Cui, Baoshan
    Wu, Kai
    Guo, Xiaobin
    Yang, Dezheng
    Wang, Jianbo
    Xi, Li
    SCIENTIFIC REPORTS, 2018, 8
  • [6] Interfacial Spin-Orbit Coupling: A Platform for Superconducting Spintronics
    Martinez, Isidoro
    Hogl, Petra
    Gonzalez-Ruano, Cesar
    Cascales, Juan Pedro
    Tiusan, Coriolan
    Lu, Yuan
    Hehn, Michel
    Matos-Abiague, Alex
    Fabian, Jaroslav
    Zutic, Igor
    Aliev, Farkhad G.
    PHYSICAL REVIEW APPLIED, 2020, 13 (01)
  • [7] Spin-orbit torques: Materials, physics, and devices
    Han, Xiufeng
    Wang, Xiao
    Wan, Caihua
    Yu, Guoqiang
    Lv, Xiaorong
    APPLIED PHYSICS LETTERS, 2021, 118 (12)
  • [8] Effect of capping layer on spin-orbit torques
    Sun, Chi
    Siu, Zhuo Bin
    Tan, Seng Ghee
    Yang, Hyunsoo
    Jalil, Mansoor B. A.
    JOURNAL OF APPLIED PHYSICS, 2018, 123 (15)
  • [9] Autoresonant magnetization switching by spin-orbit torques
    Go, Gyungchoon
    Lee, Seung-Jae
    Lee, Kyung-Jin
    PHYSICAL REVIEW B, 2017, 95 (18)
  • [10] Thermal spin-orbit torque with Dresselhaus spin-orbit coupling
    Xue, Chun-Yi
    Wang, Ya-Ru
    Wang, Zheng-Chuan
    EUROPEAN PHYSICAL JOURNAL B, 2024, 97 (02)