Current induced torques and interfacial spin-orbit coupling: Semiclassical modeling

被引:436
作者
Haney, Paul M. [1 ]
Lee, Hyun-Woo [2 ,3 ]
Lee, Kyung-Jin [1 ,4 ,5 ,6 ]
Manchon, Aurelien [7 ]
Stiles, M. D. [1 ]
机构
[1] NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA
[2] Pohang Univ Sci & Technol, PCTP, Kyungbuk 790784, South Korea
[3] Pohang Univ Sci & Technol, Dept Phys, Kyungbuk 790784, South Korea
[4] Korea Univ, Dept Mat Sci & Engn, Seoul 136713, South Korea
[5] Korea Univ, KU KIST Grad Sch Converging Sci & Technol, Seoul 136713, South Korea
[6] Univ Maryland, Maryland Nanoctr, College Pk, MD 20742 USA
[7] KAUST, Core Labs, Thuwal 239556900, Saudi Arabia
关键词
DOMAIN-WALL MOTION; MAGNETIZATION DYNAMICS; MAGNETORESISTANCE;
D O I
10.1103/PhysRevB.87.174411
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In bilayer nanowires consisting of a ferromagnetic layer and a nonmagnetic layer with strong spin-orbit coupling, currents create torques on the magnetization beyond those found in simple ferromagnetic nanowires. The resulting magnetic dynamics appear to require torques that can be separated into two terms, dampinglike and fieldlike. The dampinglike torque is typically derived from models describing the bulk spin Hall effect and the spin transfer torque, and the fieldlike torque is typically derived from a Rashba model describing interfacial spin-orbit coupling. We derive a model based on the Boltzmann equation that unifies these approaches. We also consider an approximation to the Boltzmann equation, the drift-diffusion model, that qualitatively reproduces the behavior, but quantitatively differs in some regimes. We show that the Boltzmann equation with physically reasonable parameters can match the torques for any particular sample, but in some cases, it fails to describe the experimentally observed thickness dependencies.
引用
收藏
页数:13
相关论文
共 71 条
[1]   Electric manipulation of spin relaxation using the spin Hall effect [J].
Ando, K. ;
Takahashi, S. ;
Harii, K. ;
Sasage, K. ;
Ieda, J. ;
Maekawa, S. ;
Saitoh, E. .
PHYSICAL REVIEW LETTERS, 2008, 101 (03)
[2]   Current-perpendicular (CPP) magnetoresistance in magnetic metallic multilayers [J].
Bass, J ;
Pratt, WP .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1999, 200 (1-3) :274-289
[3]   Dynamics of field-driven domain-wall propagation in ferromagnetic nanowires [J].
Beach, GSD ;
Nistor, C ;
Knutson, C ;
Tsoi, M ;
Erskine, JL .
NATURE MATERIALS, 2005, 4 (10) :741-744
[4]   LOW-FIELD MAGNETORESISTANCE AND DOMAIN DRAG IN FERROMAGNETS [J].
BERGER, L .
JOURNAL OF APPLIED PHYSICS, 1978, 49 (03) :2156-2161
[6]   Emission of spin waves by a magnetic multilayer traversed by a current [J].
Berger, L .
PHYSICAL REVIEW B, 1996, 54 (13) :9353-9358
[7]   Non-collinear magnetoelectronics [J].
Brataas, A ;
Bauer, GEW ;
Kelly, PJ .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 427 (04) :157-255
[8]  
BYCHKOV YA, 1984, JETP LETT+, V39, P78
[9]   THEORY OF GIANT MAGNETORESISTANCE EFFECTS IN MAGNETIC LAYERED STRUCTURES WITH ANTIFERROMAGNETIC COUPLING [J].
CAMLEY, RE ;
BARNAS, J .
PHYSICAL REVIEW LETTERS, 1989, 63 (06) :664-667
[10]   Control of Magnetic Fluctuations by Spin Current [J].
Demidov, V. E. ;
Urazhdin, S. ;
Edwards, E. R. J. ;
Stiles, M. D. ;
McMichael, R. D. ;
Demokritov, S. O. .
PHYSICAL REVIEW LETTERS, 2011, 107 (10)