To construct lumps, breathers and interaction solutions of arbitrary higher-order for a (4+1)-dimensional Fokas equation

被引:11
作者
Li, Wei [1 ]
Liu, Yinping [2 ]
机构
[1] East China Normal Univ, Dept Comp Sci & Technol, Shanghai, Peoples R China
[2] East China Normal Univ, Shanghai Key Lab PMMP, Sch Math Sci, Shanghai, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2020年 / 34卷 / 21期
基金
中国国家自然科学基金;
关键词
Symbolic computation; (4+1)-dimensional Fokas equation; simplified Hirota method; lump solutions; breather solutions; interaction solutions; TRAVELING-WAVE SOLUTIONS; MULTIPLE-SOLITON SOLUTIONS; BILINEAR FORMALISM;
D O I
10.1142/S0217984920502218
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this work, by introducing a kind of parameters constraint to ensure that the well known formula of n-soliton solutions works well not only for integrable systems, but also for non-integrable systems. Then for the (4 + 1)-dimensional Fokas equation, based on this constraint and the modified n-soliton solutions, we further construct its different types of higher-order wave solutions, especially new types of interaction solutions.
引用
收藏
页数:16
相关论文
共 39 条
[1]   New exact traveling wave solutions of the (4+1)-dimensional Fokas equation [J].
Al-Amr, Mohammed O. ;
El-Ganaini, Shoukry .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (06) :1274-1287
[2]   Lump Solutions to a (2+1)-Dimensional Fifth-Order KdV-Like Equation [J].
Batwa, Sumayah ;
Ma, Wen-Xiu .
ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
[3]  
Chao Ma, 2014, Advanced Materials Research, V1051, P1000, DOI 10.4028/www.scientific.net/AMR.1051.1000
[4]  
Cheng L., 2017, MOD PHYS LETT B, V31, P175
[5]   A new approach to the Darboux-Backlund transformation versus the standard dressing method [J].
Cieslinski, JL ;
Biernacki, W .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (43) :9491-9501
[6]   SPATIO-TEMPORAL DYNAMICS AND INTERACTION OF LUMP SOLUTIONS FOR THE (4+1)-D FOKAS EQUATION [J].
Dai, Hou-Ping ;
Tan, Wei ;
Zheng, Zhou-Shun .
THERMAL SCIENCE, 2018, 22 (04) :1823-1830
[7]  
Fokas A. S., 2006, PHYS REV LETT, V96, P190
[8]   SOLITON-SOLUTIONS OF THE KORTEWEG-DEVRIES AND KADOMTSEV-PETVIASHVILI EQUATIONS - THE WRONSKIAN TECHNIQUE [J].
FREEMAN, NC ;
NIMMO, JJC .
PHYSICS LETTERS A, 1983, 95 (01) :1-3
[9]   Symbolic methods to construct exact solutions of nonlinear partial differential equations [J].
Hereman, W ;
Nuseir, A .
MATHEMATICS AND COMPUTERS IN SIMULATION, 1997, 43 (01) :13-27
[10]  
Hirota R., 2004, The direct method in soliton theory, V155