Climate oscillations and species interactions: large-scale congruence but regional differences in the phylogeographic structures of an alpine plant and its monophagous insect

被引:18
|
作者
Borer, Matthias [2 ]
Arrigo, Nils [3 ]
Buerki, Sven [4 ,5 ]
Naisbit, Russell E. [6 ]
Alvarez, Nadir [1 ]
机构
[1] Univ Lausanne, Dept Ecol & Evolut, CH-1015 Lausanne, Switzerland
[2] Museum Nat Hist Neuchatel, CH-2000 Neuchatel, Switzerland
[3] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA
[4] Royal Bot Gardens, Jodrell Lab, Mol Systemat Sect, Richmond TW9 3DS, Surrey, England
[5] CSIC, Real Jardin Bot, Dept Biodivers & Conservat, E-28014 Madrid, Spain
[6] Univ Fribourg, Dept Biol, Unit Ecol & Evolut, CH-1700 Fribourg, Switzerland
基金
瑞士国家科学基金会;
关键词
AFLP; congruence testing; Europe; Oreina gloriosa; Peucedanum ostruthium; phylogeography; Procrustean analyses; Quaternary; random walk model; spatial genetic structure; MOUNTAIN PLANTS; HISTORY; EVOLUTION; DNA; DISTRIBUTIONS; DIVERSITY; RESPONSES; GENETICS; ECOLOGY; MARKERS;
D O I
10.1111/j.1365-2699.2012.02703.x
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Aim To predict the fate of alpine interactions involving specialized species, using a monophagous beetle and its host plant as a case study. Location The Alps. Methods We investigated genetic structuring of the herbivorous beetle Oreina gloriosa and its specific host-plant Peucedanum ostruthium. We used genome fingerprinting (in the insect and the plant) and sequence data (in the insect) to compare the distribution of the main gene pools in the two associated species and to estimate divergence time in the insect, a proxy for the temporal origin of the interaction. We quantified the similarity in spatial genetic structures by performing a Procrustes analysis, a tool from shape theory. Finally, we simulated recolonization of an empty space analogous to the deglaciated Alps just after ice retreat by two lineages from two species showing unbalanced dependence, to examine how timing of the recolonization process, as well as dispersal capacities of associated species, could explain the observed pattern. Results Contrasting with expectations based on their asymmetrical dependence, patterns in the beetle and plant were congruent at a large scale. Exceptions occurred at a regional scale in areas of admixture, matching known suture zones in Alpine plants. Simulations using a lattice-based model suggested these empirical patterns arose during or soon after recolonization, long after the estimated origin of the interaction c. 0.5 million years ago. Main conclusions Species-specific interactions are scarce in alpine habitats because glacial cycles have limited the opportunities for co-evolution. Their fate, however, remains uncertain under climate change. Here we show that whereas most dispersal routes are paralleled at a large scale, regional incongruence implies that the destinies of the species might differ under changing climate. This may be a consequence of the host dependence of the beetle, which locally limits the establishment of dispersing insects.
引用
收藏
页码:1487 / 1498
页数:12
相关论文
共 20 条