A New Weight Adjusted Particle Swarm Optimization for Real-Time Multiple Object Tracking

被引:4
|
作者
Liu, Guang [1 ]
Chen, Zhenghao [1 ]
Yeung, Henry Wing Fung [1 ]
Chung, Yuk Ying [1 ]
Yeh, Wei-Chang [2 ]
机构
[1] Univ Sydney, Sch Informat Technol, Sydney, NSW 2006, Australia
[2] Natl Tsing Hua Univ, Dept Ind Engn & Engn Management, POB 24-60, Hsinchu 300, Taiwan
来源
NEURAL INFORMATION PROCESSING, ICONIP 2016, PT II | 2016年 / 9948卷
关键词
Object tracking; Particle swarm optimization; Root sum squared errors; Multiple object tracking;
D O I
10.1007/978-3-319-46672-9_72
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a novel Weight Adjusted Particle Swarm Optimization (WAPSO) to overcome the occlusion problem and computational cost in multiple object tracking. To this end, a new update strategy of inertia weight of the particles in WAPSO is designed to maintain particle diversity and prevent pre-mature convergence. Meanwhile, the implementation of a mechanism that enlarges the search space upon the detection of occlusion enhances WAPSO's robustness to non-linear target motion. In addition, the choice of Root Sum Squared Errors as the fitness function further increases the speed of the proposed approach. The experimental results has shown that in combination with the model feature that enables initialization of multiple independent swarms, the high-speed WAPSO algorithm can be applied to multiple non-linear object tracking for real-time applications.
引用
收藏
页码:643 / 651
页数:9
相关论文
共 50 条
  • [41] A Real-Time Processing Stand-Alone Multiple Object Visual Tracking System
    Fernandez-Sanjurjo, Mauro
    Mucientes, Manuel
    Brea, Victor M.
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2019, PT I, 2019, 11678 : 64 - 74
  • [42] REAL-TIME 3D OBJECT TRACKING
    STEPHENS, RS
    IMAGE AND VISION COMPUTING, 1990, 8 (01) : 91 - 96
  • [43] Study on a Real-time Image Object Tracking System
    Wang, Qiang
    Gao, Zhanhong
    ISCSCT 2008: INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE AND COMPUTATIONAL TECHNOLOGY, VOL 2, PROCEEDINGS, 2008, : 788 - 791
  • [44] Motioninsights: real-time object tracking in streaming video
    Banelas, Dimitrios
    Petrakis, Euripides G. M.
    MACHINE VISION AND APPLICATIONS, 2024, 35 (04)
  • [45] A Siamese Network for real-time object tracking on CPU
    Xing, Daitao
    Evangeliou, Nikolaos
    Tsoukalas, Athanasios
    Tzes, Anthony
    SOFTWARE IMPACTS, 2022, 12
  • [46] Real-time object tracking of a robot head based on multiple visual cues integration
    Pang, Yunting
    Huang, Qiang
    Zhang, Weimin
    Hu, Zhangfeng
    Rajpar, Altaf Hussain
    Li, Kejie
    2006 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-12, 2006, : 686 - +
  • [47] Real-Time Object Tracking with Template Tracking and Foreground Detection Network
    Dai, Kaiheng
    Wang, Yuehuan
    Song, Qiong
    SENSORS, 2019, 19 (18)
  • [48] Improving Real-Time Object Tracking Through Adaptive Feature Fusion and Resampling in Particle Filters
    Naznin, Feroza
    Alam, Md Shoab
    Sathi, Samia Alam
    Islam, Md Zahidul
    HCI INTERNATIONAL 2024 POSTERS, PT VII, HCII 2024, 2024, 2120 : 114 - 127
  • [49] Research on Real-time Object Tracking by Improved CamShift
    Yin, Jianqin
    Han, Yanbin
    Li, Jinping
    Cao, Aizeng
    2009 INTERNATIONAL SYMPOSIUM ON COMPUTER NETWORK AND MULTIMEDIA TECHNOLOGY (CNMT 2009), VOLUMES 1 AND 2, 2009, : 703 - 706
  • [50] Object Tracking via Multi-Region Covariance and Particle Swarm Optimization
    Kwolek, Bogdan
    AVSS: 2009 6TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE, 2009, : 418 - 423