A New Weight Adjusted Particle Swarm Optimization for Real-Time Multiple Object Tracking

被引:4
|
作者
Liu, Guang [1 ]
Chen, Zhenghao [1 ]
Yeung, Henry Wing Fung [1 ]
Chung, Yuk Ying [1 ]
Yeh, Wei-Chang [2 ]
机构
[1] Univ Sydney, Sch Informat Technol, Sydney, NSW 2006, Australia
[2] Natl Tsing Hua Univ, Dept Ind Engn & Engn Management, POB 24-60, Hsinchu 300, Taiwan
来源
NEURAL INFORMATION PROCESSING, ICONIP 2016, PT II | 2016年 / 9948卷
关键词
Object tracking; Particle swarm optimization; Root sum squared errors; Multiple object tracking;
D O I
10.1007/978-3-319-46672-9_72
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a novel Weight Adjusted Particle Swarm Optimization (WAPSO) to overcome the occlusion problem and computational cost in multiple object tracking. To this end, a new update strategy of inertia weight of the particles in WAPSO is designed to maintain particle diversity and prevent pre-mature convergence. Meanwhile, the implementation of a mechanism that enlarges the search space upon the detection of occlusion enhances WAPSO's robustness to non-linear target motion. In addition, the choice of Root Sum Squared Errors as the fitness function further increases the speed of the proposed approach. The experimental results has shown that in combination with the model feature that enables initialization of multiple independent swarms, the high-speed WAPSO algorithm can be applied to multiple non-linear object tracking for real-time applications.
引用
收藏
页码:643 / 651
页数:9
相关论文
共 50 条
  • [21] Real-time multiple object tracking using deep learning methods
    Meimetis, Dimitrios
    Daramouskas, Ioannis
    Perikos, Isidoros
    Hatzilygeroudis, Ioannis
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (01) : 89 - 118
  • [22] Multi-swarm Particle Grid Optimization for Object Tracking
    Sha, Feng
    Yeung, Henry Wing Fung
    Chung, Yuk Ying
    Liu, Guang
    Yeh, Wei-Chang
    NEURAL INFORMATION PROCESSING, ICONIP 2016, PT II, 2016, 9948 : 707 - 714
  • [23] Real-Time Multiple Object Visual Tracking for Embedded GPU Systems
    Fernandez-Sanjurjo, Mauro
    Mucientes, Manuel
    Brea, Victor Manuel
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (11) : 9177 - 9188
  • [24] Real-time interactive modeling and scalable multiple object tracking for AR
    Kim, Kiyoung
    Lepetit, Vincent
    Woo, Woontack
    COMPUTERS & GRAPHICS-UK, 2012, 36 (08): : 945 - 954
  • [25] An enhanced particle swarm optimization with distribution fields appearance model for object tracking
    Hu, Quanyi
    Qin, Peng
    Yang, Jie
    Fong, Simon
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2021, 19 (01)
  • [26] Real-time multiple object tracking using deep learning methods
    Dimitrios Meimetis
    Ioannis Daramouskas
    Isidoros Perikos
    Ioannis Hatzilygeroudis
    Neural Computing and Applications, 2023, 35 : 89 - 118
  • [27] Research on Continuous Object Real-time Tracking Based on SIFT and Particle Filter
    Ma, Chen
    Wang, Tao
    Xu, Jianwei
    2018 10TH INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS (ICCCAS 2018), 2018, : 130 - 135
  • [28] Real-time object tracking from corners
    Wang, H
    Chua, CS
    Sim, CT
    ROBOTICA, 1998, 16 : 109 - 116
  • [29] Real-time system design for object tracking
    Liu, Chong
    Li, Zhenhao
    Sang, Yang
    Ba, Qinglong
    Proceedings of the 2016 3rd International Conference on Mechatronics and Information Technology (ICMIT), 2016, 49 : 241 - 246
  • [30] A REAL-TIME MULTIPLE OBJECT TRACKING NETWORK UNDER COMPLEX TRAFFIC ENVIRONMENT
    Chen G.
    Tong W.
    Cheng Y.
    Dai J.
    International Journal of Mechatronics and Applied Mechanics, 2022, 12 : 109 - 117