A New Weight Adjusted Particle Swarm Optimization for Real-Time Multiple Object Tracking

被引:4
|
作者
Liu, Guang [1 ]
Chen, Zhenghao [1 ]
Yeung, Henry Wing Fung [1 ]
Chung, Yuk Ying [1 ]
Yeh, Wei-Chang [2 ]
机构
[1] Univ Sydney, Sch Informat Technol, Sydney, NSW 2006, Australia
[2] Natl Tsing Hua Univ, Dept Ind Engn & Engn Management, POB 24-60, Hsinchu 300, Taiwan
来源
NEURAL INFORMATION PROCESSING, ICONIP 2016, PT II | 2016年 / 9948卷
关键词
Object tracking; Particle swarm optimization; Root sum squared errors; Multiple object tracking;
D O I
10.1007/978-3-319-46672-9_72
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a novel Weight Adjusted Particle Swarm Optimization (WAPSO) to overcome the occlusion problem and computational cost in multiple object tracking. To this end, a new update strategy of inertia weight of the particles in WAPSO is designed to maintain particle diversity and prevent pre-mature convergence. Meanwhile, the implementation of a mechanism that enlarges the search space upon the detection of occlusion enhances WAPSO's robustness to non-linear target motion. In addition, the choice of Root Sum Squared Errors as the fitness function further increases the speed of the proposed approach. The experimental results has shown that in combination with the model feature that enables initialization of multiple independent swarms, the high-speed WAPSO algorithm can be applied to multiple non-linear object tracking for real-time applications.
引用
收藏
页码:643 / 651
页数:9
相关论文
共 50 条
  • [1] Real time object tracking on video image sequence using particle swarm optimization
    Kobayashi, Tomoaki
    Nakagawa, Keita
    Imae, Joe
    Zhai, Guisheng
    2007 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS, VOLS 1-6, 2007, : 615 - 620
  • [2] Effective Object Tracking Framework using Weight Adjustment of Particle Swarm Optimization
    Bae, Changseok
    Teung, Henry Wing Fung
    Chung, Yuk Ying
    2018 32ND INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN), 2018, : 831 - 833
  • [3] A Categorized Particle Swarm Optimization for Object Tracking
    Sha, Feng
    Bae, Changseok
    Liu, Guang
    Zhao, XiMeng
    Chung, Yuk Ying
    Yeh, WeiChang
    2015 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2015, : 2737 - 2744
  • [4] Multiple Object Tracking Via Species-Based Particle Swarm Optimization
    Zhang, Xiaoqin
    Hu, Weiming
    Qu, Wei
    Maybank, Steve
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2010, 20 (11) : 1590 - 1602
  • [5] A New Real-time Object Tracking Algorithm for Effect and Efficiency Optimization
    Tian, Wei
    Lv, Jingyuan
    Zhao, Qinjun
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 2885 - 2890
  • [6] Particle Swarm Optimization Based Object Tracking
    Kwolek, Bogdan
    FUNDAMENTA INFORMATICAE, 2009, 95 (04) : 449 - 463
  • [7] Real-Time Multiple Object Tracking in Smart Environments
    You, Wei
    Jiang, Hao
    Li, Ze-Nian
    2008 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS, VOLS 1-4, 2009, : 818 - +
  • [8] Real-time multiple object tracking and anomaly detection
    Han, M
    Gong, YH
    STORAGE AND RETRIEVAL METHODS AND APPLICATIONS FOR MULTIMEDIA 2005, 2005, 5682 : 173 - 182
  • [9] A Probability-Dynamic Particle Swarm Optimization for Object Tracking
    Sha, Feng
    Bae, Changseok
    Liu, Guang
    Zhao, XiMeng
    Chung, Yuk Ying
    Yeh, WeiChang
    He, Xiangjian
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [10] A real-time object tracking system using a particle filter
    Cho, Jung Uk
    Jin, Seung Hun
    Pham, Xuan Dai
    Jeon, Jae Wook
    Byun, Jong Eun
    Kang, Hoon
    2006 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-12, 2006, : 2822 - 2827