Gaussian discriminative component analysis for early detection of Alzheimer's disease: A supervised dimensionality reduction algorithm

被引:19
作者
Fang, Chen [1 ]
Li, Chunfei [1 ]
Forouzannezhad, Parisa [1 ]
Cabrerizo, Mercedes [1 ]
Curiel, Rosie E. [2 ,3 ]
Loewenstein, David [2 ,3 ]
Duara, Ranjan [3 ,4 ]
Adjouadi, Malek [1 ,3 ]
机构
[1] Florida Int Univ, Dept Elect & Comp Engn, Miami, FL 33199 USA
[2] Univ Miami, Miller Sch Med, Dept Psychiat & Behav Sci, Miami, FL 33136 USA
[3] Univ Florida, Alzheimers Dis Res Ctr ADRC 1Florida, Gainesville, FL USA
[4] Mt Sinai Med Ctr, Wien Ctr Alzheimers Dis & Memory Disorders, Miami Beach, FL 33140 USA
基金
美国国家科学基金会; 加拿大健康研究院; 美国国家卫生研究院;
关键词
Alzheimer's disease; Computer-aided diagnosis; Dimensionality reduction; Mild cognitive impairment (MCI); Multiclass classification; Multimodal analysis; FEATURE-SELECTION; MRI; CLASSIFICATION; PREDICTION; DIAGNOSIS; ACCURACY;
D O I
10.1016/j.jneumeth.2020.108856
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Using multiple modalities of biomarkers, several machine leaning-based approaches have been proposed to characterize patterns of structural, functional and metabolic differences discernible from multimodal neuroimaging data for Alzheimer's disease (AD). Current investigations report several studies using binary classification often augmented with local feature selection methods, while fewer other studies address the challenging problem of multiclass classification. New method: To assess the merits of each of these research directions, this study introduces a supervised Gaussian discriminative component analysis (GDCA) algorithm, which can effectively delineate subtle changes of early mild cognitive impairment (EMCI) group in relation to the cognitively normal control (CN) group. Using 251 CN, 297 EMCI, 196 late MCI (LMCI), and 162 AD subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and considering both structural and functional (metabolic) information from magnetic resonance imaging (MRI) and positron emission tomography (PET) modalities as input, the proposed method conducts a dimensionality reduction algorithm taking into consideration the interclass information to define an optimal eigenspace that maximizes the discriminability of selected eigenvectors. Results: The proposed algorithm achieves an accuracy of 79.25 % for delineating EMCI from CN using 38.97 % of Gaussian discriminative components (i.e., dimensionality reduction). Moreover, for detecting the different stages of AD, a multiclass classification experiment attained an overall accuracy of 67.69 %, and more notably, discriminates MCI and AD groups from the CN group with an accuracy of 75.28 % using 48.90 % of the Gaussian discriminative components. Comparison with existing method(s): The classification results of the proposed GDCA method outperform the more recently published state-of-the-art methods in AD-related multiclass classification tasks, and seems to be the most stable and reliable in terms of relating the most relevant features to the optimal classification performance. Conclusion: The proposed GDCA model with its high prospects for multiclass classification has a high potential for deployment as a computer aided clinical diagnosis system for AD.
引用
收藏
页数:11
相关论文
共 36 条
  • [1] Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images
    Chu, Carlton
    Hsu, Ai-Ling
    Chou, Kun-Hsien
    Bandettini, Peter
    Lin, ChingPo
    [J]. NEUROIMAGE, 2012, 60 (01) : 59 - 70
  • [2] A cognitive stress test for prodromal Alzheimer's disease: Multiethnic generalizability
    Curiel Cid, Rosie E.
    Loewenstein, David A.
    Rosselli, Monica
    Matias-Guiu, Jordi A.
    Pina, Daema
    Adjouadi, Malek
    Cabrerizo, Mercedes
    Bauer, Russell M.
    Chan, Aldrich
    DeKosky, Steven T.
    Golde, Todd
    Greig-Custo, Maria T.
    Lizarraga, Gabriel
    Penate, Ailyn
    Duara, Ranjan
    [J]. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING, 2019, 11 (01) : 550 - 559
  • [3] Semantic Intrusions and Failure to Recover From Semantic Interference in Mild Cognitive Impairment: Relationship to Amyloid and Cortical Thickness
    Curiel, Rosie E.
    Loewenstein, David A.
    Rosselli, Monica
    Penate, Ailyn
    Greig-Custo, Maria T.
    Bauer, Russell M.
    Guinjoan, Salvador M.
    Hanson, Kevin S.
    Li, Chunfei
    Lizarraga, Gabriel
    Barker, William W.
    Torres, Valeria
    DeKosky, Steven
    Adjouadi, Malek
    Duara, Ranjan
    [J]. CURRENT ALZHEIMER RESEARCH, 2018, 15 (09) : 848 - 855
  • [4] Effect of age, ethnicity, sex, cognitive status and APOE genotype on amyloid load and the threshold for amyloid positivity
    Duara, R.
    Loewenstein, D. A.
    Lizarraga, G.
    Adjouadi, M.
    Barker, W. W.
    Greig-Gusto, M. T.
    Rosselli, M.
    Penate, A.
    Shea, Y. F.
    Behar, R.
    Ollarves, A.
    Robayo, C.
    Hanson, K.
    Marsiske, M.
    Burke, S.
    Ertekin-Taner, N.
    Vaillancourt, D.
    De Santi, S.
    Golde, T.
    DeKosky, S. T.
    [J]. NEUROIMAGE-CLINICAL, 2019, 22
  • [5] Gaussian Discriminant Analysis for Optimal Delineation of Mild Cognitive Impairment in Alzheimer's Disease
    Fang, Chen
    Li, Chunfei
    Cabrerizo, Mercedes
    Barreto, Armando
    Andrian, Jean
    Rishe, Naphtali
    Loewenstein, David
    Duara, Ranjan
    Adjouadi, Malek
    [J]. INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2018, 28 (08)
  • [6] Boosting diagnosis accuracy of Alzheimer's disease using high dimensional recognition of longitudinal brain atrophy patterns
    Farzan, Ali
    Mashohor, Syansiah
    Ramli, Abd Rahman
    Mahmud, Rozi
    [J]. BEHAVIOURAL BRAIN RESEARCH, 2015, 290 : 124 - 130
  • [7] A Gaussian-based model for early detection of mild cognitive impairment using multimodal neuroimaging
    Forouzannezhad, Parisa
    Abbaspour, Alireza
    Li, Chunfei
    Fang, Chen
    Williams, Ulyana
    Cabrerizo, Mercedes
    Barreto, Armando
    Andrian, Jean
    Rishe, Naphtali
    Curiel, Rosie E.
    Loewenstein, David
    Duara, Ranjan
    Adjouadi, Malek
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2020, 333
  • [8] Multimodal Hippocampal Subfield Grading For Alzheimer's Disease Classification
    Hett, Kilian
    Vinh-Thong Ta
    Catheline, Gwenaelle
    Tourdias, Thomas
    Manjon, Jose V.
    Coupe, Pierrick
    Weiner, Michael W.
    Aisen, Paul
    Petersen, Ronald
    Jack, Clifford R.
    Jagust, William
    Trojanowki, John Q.
    Toga, Arthur W.
    Beckett, Laurel
    Green, Robert C.
    Saykin, Andrew J.
    Morris, John
    Shaw, Leslie M.
    Khachaturian, Zaven
    Sorensen, Greg
    Carrillo, Maria
    Kuller, Lew
    Raichle, Marc
    Paul, Steven
    Davies, Peter
    Fillit, Howard
    Hefti, Franz
    Holtzman, Davie
    Mesulam, M. Marcel
    Potter, William
    Snyder, Peter
    Montine, Tom
    Thomas, Ronald G.
    Donohue, Michael
    Walter, Sarah
    Sather, Tamie
    Jiminez, Gus
    Balasubramanian, Archana B.
    Mason, Jennifer
    Sim, Iris
    Harvey, Danielle
    Bernstein, Matthew
    Fox, Nick
    Thompson, Paul
    Schuff, Norbert
    Decarli, Charles
    Borowski, Bret
    Gunter, Jeff
    Senjem, Matt
    Vemuri, Prashanthi
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [9] FSL
    Jenkinson, Mark
    Beckmann, Christian F.
    Behrens, Timothy Ej.
    Woolrich, Mark W.
    Smith, Stephen M.
    [J]. NEUROIMAGE, 2012, 62 (02) : 782 - 790
  • [10] Integration of temporal and spatial properties of dynamic connectivity networks for automatic diagnosis of brain disease
    Jie, Biao
    Liu, Mingxia
    Shen, Dinggang
    [J]. MEDICAL IMAGE ANALYSIS, 2018, 47 : 81 - 94