Complementary roles of murine NaV1.7, NaV1.8 and NaV1.9 in acute itch signalling

被引:18
|
作者
Kuehn, Helen [1 ]
Kappes, Leonie [1 ]
Wolf, Katharina [1 ]
Gebhardt, Lisa [1 ,2 ]
Neurath, Markus F. [1 ]
Reeh, Peter [2 ]
Fischer, Michael J. M. [3 ]
Kremer, Andreas E. [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Dept Med 1, Ulmenweg 18, Erlangen, Germany
[2] Friedrich Alexander Univ Erlangen Nurnberg, Inst Physiol & Pathophysiol, Univ Str 17, Erlangen, Germany
[3] Med Univ Vienna, Ctr Physiol & Pharmacol, Schwarzspanierstr 17, Vienna, Austria
关键词
GATED SODIUM-CHANNELS; CLOSED-STATE INACTIVATION; PAIN; CURRENTS; TARGETS; EXCITABILITY; NOCICEPTION; INHIBITORS; EXPRESSION; MUTATIONS;
D O I
10.1038/s41598-020-59092-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Acute pruritus occurs in various disorders. Despite severe repercussions on quality of life treatment options remain limited. Voltage-gated sodium channels (Na-V) are indispensable for transformation and propagation of sensory signals implicating them as drug targets. Here, Na(V)1.7, 1.8 and 1.9 were compared for their contribution to itch by analysing Na-V-specific knockout mice. Acute pruritus was induced by a comprehensive panel of pruritogens (C48/80, endothelin, 5-HT, chloroquine, histamine, lysophosphatidic acid, trypsin, SLIGRL, beta-alanine, BAM8-22), and scratching was assessed using a magnet-based recording technology. We report an unexpected stimulus-dependent diversity in Na-V channel-mediated itch signalling. Na(V)1.7(-/-) showed substantial scratch reduction mainly towards strong pruritogens. Na(V)1.8(-/-) impaired histamine and 5-HT-induced scratching while Na(V)1.9 was involved in itch signalling towards 5-HT, C48/80 and SLIGRL. Furthermore, similar microfluorimetric calcium responses of sensory neurons and expression of itch-related TRP channels suggest no change in sensory transduction but in action potential transformation and conduction. The cumulative sum of scratching over all pruritogens confirmed a leading role of Na(V)1.7 and indicated an overall contribution of Na(V)1.9. Beside the proposed general role of Na(V)1.7 and 1.9 in itch signalling, scrutiny of time courses suggested Na(V)1.8 to sustain prolonged itching. Therefore, Na(V)1.7 and 1.9 may represent targets in pruritus therapy.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Targeting Voltage Gated Sodium Channels NaV1.7, NaV1.8, and NaV1.9 for Treatment of Pathological Cough
    Muroi, Yukiko
    Undem, Bradley J.
    LUNG, 2014, 192 (01) : 15 - 20
  • [2] Unique electrophysiological property of a novel Nav1.7, Nav1.8, and Nav1.9 sodium channel blocker, ANP-230
    Kamei, Tatsuya
    Kudo, Takehiro
    Yamane, Hana
    Ishibashi, Fumiaki
    Takada, Yoshinori
    Honda, Shigeyuki
    Maezawa, Yasuyo
    Ikeda, Kazuhito
    Oyamada, Yoshihiro
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2024, 721
  • [3] Nav1.7 and Nav1.8: Role in the pathophysiology of pain
    Hameed, Shaila
    MOLECULAR PAIN, 2019, 15
  • [4] Sodium channels Nav1.7, Nav1.8 and pain; two distinct mechanisms for Nav1.7 null analgesia
    Iseppon, Federico
    Kanellopoulos, Alexandros H.
    Tian, Naxi
    Zhou, Jun
    Caan, Gozde
    Chiozzi, Riccardo
    Thalassinos, Konstantinos
    Cubuk, Cankut
    Lewis, Myles J.
    Cox, James J.
    Zhao, Jing
    Woods, Christopher G.
    Wood, John N.
    NEUROBIOLOGY OF PAIN, 2024, 16
  • [5] Fenamates inhibit human sodium channel Nav1.7 and Nav1.8
    Sun, Jian-Fang
    Xu, Yi-Jia
    Kong, Xiao-Hua
    Su, Yang
    Wang, Zhan-You
    NEUROSCIENCE LETTERS, 2019, 696 : 67 - 73
  • [6] Animal Toxins Can Alter the Function of Nav1.8 and Nav1.9
    Gilchrist, John
    Bosmans, Frank
    TOXINS, 2012, 4 (08): : 620 - 632
  • [7] NaV1.8/NaV1.9 double deletion mildly affects acute pain responses in mice
    Alves-Simoes, Marta
    Teege, Laura
    Tomni, Cecilia
    Luerkens, Martha
    Schmidt, Annika
    Iseppon, Federico
    Millet, Queensta
    Kuehs, Samuel
    Katona, Istvan
    Weis, Joachim
    Heinemann, Stefan H.
    Huebner, Christian A.
    Wood, John
    Leipold, Enrico
    Kurth, Ingo
    Haag, Natja
    PAIN, 2025, 166 (04) : 773 - 792
  • [8] Gating properties of Nav1.7 and Nav1.8 peripheral nerve sodium channels
    Vijayaragavan, K
    O'Leary, ME
    Chahine, M
    JOURNAL OF NEUROSCIENCE, 2001, 21 (20) : 7909 - 7918
  • [9] Changes in the expression of voltage-gated sodium channels Nav1.3, Nav1.7, Nav1.8, and Nav1.9 in rat trigeminal ganglia following chronic constriction injury
    Xu, Wenhua
    Zhang, Jun
    Wang, Yuanyin
    Wang, Liecheng
    Wang, Xuxia
    NEUROREPORT, 2016, 27 (12) : 929 - 934
  • [10] Targeting Nav1.7 and Nav1.8 with a PIKfyve inhibitor to reverse inflammatory and neuropathic pain
    Rodriguez-Palma, Erick J.
    Loya-Lopez, Santiago
    Min, Sophia M.
    Calderon-Rivera, Aida
    Gomez, Kimberly
    Khanna, Rajesh
    Axtman, Alison D.
    NEUROBIOLOGY OF PAIN, 2025, 17