Cardiac sarcoidosis classification with deep convolutional neural network-based features using polar maps

被引:32
作者
Togo, Ren [1 ,5 ]
Hirata, Kenji [2 ]
Manabe, Osamu [2 ]
Ohira, Hiroshi [3 ]
Tsujino, Ichizo [3 ]
Magota, Keiichi [4 ]
Ogawa, Takahiro [1 ]
Haseyama, Miki [1 ]
Shiga, Tohru [2 ]
机构
[1] Hokkaido Univ, Grad Sch Informat Sci & Technol, Sapporo, Hokkaido 0600814, Japan
[2] Hokkaido Univ, Grad Sch Med, Dept Nucl Med, Sapporo, Hokkaido 0608638, Japan
[3] Hokkaido Univ Hosp, Dept Med 1, Sapporo, Hokkaido 0608638, Japan
[4] Hokkaido Univ Hosp, Div Med Imaging & Technol, Sapporo, Hokkaido 0608638, Japan
[5] Hokkaido Univ, Grad Sch Informat Sci & Technol, Kita Ku, N-14,W-9, Sapporo, Hokkaido 0600814, Japan
基金
日本科学技术振兴机构;
关键词
Deep learning; Convolutional neural network (CNN); Cardiac sarcoidosis (CS); F-18-FDG PET; Computer-aided diagnosis; Radiology; Machine learning; Feature extraction; Feature selection; F-18-FDG PET; AGREEMENT; DIAGNOSIS; DISEASE;
D O I
10.1016/j.compbiomed.2018.11.008
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Aims: The aim of this study was to determine whether deep convolutional neural network (DCNN)-based features can represent the difference between cardiac sarcoidosis (CS) and non-CS using polar maps. Methods: A total of 85 patients (33 CS patients and 52 non-CS patients) were analyzed as our study subjects. One radiologist reviewed PET/CT images and defined the left ventricle region for the construction of polar maps. We extracted high-level features from the polar maps through the Inception-v3 network and evaluated their effectiveness by applying them to a CS classification task. Then we introduced the ReliefF algorithm in our method. The standardized uptake value (SUV)-based classification method and the coefficient of variance (CoV)-based classification method were used as comparative methods. Results: Sensitivity, specificity and the harmonic mean of sensitivity and specificity of our method with the ReliefF algorithm were 0.839, 0.870 and 0.854, respectively. Those of the SUVmax-based classification method were 0.468, 0.710 and 0.564, respectively, and those of the CoV-based classification method were 0.655, 0.750 and 0.699, respectively. Conclusion: The DCNN-based high-level features may be more effective than low-level features used in conventional quantitative analysis methods for CS classification.
引用
收藏
页码:81 / 86
页数:6
相关论文
共 50 条
  • [21] Classification of Plants Using Convolutional Neural Network
    Saini, Gurinder
    Khamparia, Aditya
    Luhach, Ashish Kumar
    FIRST INTERNATIONAL CONFERENCE ON SUSTAINABLE TECHNOLOGIES FOR COMPUTATIONAL INTELLIGENCE, 2020, 1045 : 551 - 561
  • [22] Sound Classification Using Convolutional Neural Network and Tensor Deep Stacking Network
    Khamparia, Aditya
    Gupta, Deepak
    Nhu Gia Nguyen
    Khanna, Ashish
    Pandey, Babita
    Tiwari, Prayag
    IEEE ACCESS, 2019, 7 : 7717 - 7727
  • [23] Convolutional Neural Network-based Jaywalking Data Generation and Classification
    Park, Jaeseo
    Lee, Yunsoo
    Heo, Jun Ho
    Kang, Suk-Ju
    2019 INTERNATIONAL SOC DESIGN CONFERENCE (ISOCC), 2019, : 132 - 133
  • [25] Wetland Classification Using Deep Convolutional Neural Network
    Mandianpari, Masoud
    Rezaee, Mohammad
    Zhang, Yun
    Salehi, Bahram
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 9249 - 9252
  • [26] Deep Convolutional Neural Network-Based Detector for Index Modulation
    Wang, Tengjiao
    Yang, Fang
    Song, Jian
    Han, Zhu
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (10) : 1705 - 1709
  • [27] Optimization-enabled deep convolutional neural network with multiple features for cardiac arrhythmia classification using ECG signals
    Soman, Anila
    Sarath, R.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 92
  • [28] Fingerprint Classification using a Deep Convolutional Neural Network
    Pandya, Bhavesh
    Cosma, Georgina
    Alani, Ali A.
    Taherkhani, Aboozar
    Bharadi, Vinayak
    McGinnity, T. M.
    2018 4TH INTERNATIONAL CONFERENCE ON INFORMATION MANAGEMENT (ICIM2018), 2018, : 86 - 91
  • [29] Convolutional Neural Network-Based Automatic Classification for Algal Morphogenesis
    Hayashi, Kohma
    Kato, Shoichi
    Matsunaga, Sachihiro
    CYTOLOGIA, 2018, 83 (03) : 300 - 304
  • [30] Solid Waste Image Classification Using Deep Convolutional Neural Network
    Nnamoko, Nonso
    Barrowclough, Joseph
    Procter, Jack
    INFRASTRUCTURES, 2022, 7 (04)