Nonreciprocal conversion between radio-frequency and optical photons with an optoelectromechanical system

被引:11
作者
Eshaqi-Sani, Najmeh [1 ]
Zippilli, Stefano [1 ]
Vitali, David [1 ,2 ,3 ]
机构
[1] Univ Camerino, Sch Sci & Technol, Phys Div, I-62032 Camerino, Italy
[2] Ist Nazl Fis Nucl, Sez Perugia, via A Pascoli, I-06123 Perugia, Italy
[3] Consiglio Nazl Richerce Inst Nazl Ott, Lgo Enr Fermi 6, I-50125 Florence, Italy
基金
欧盟地平线“2020”;
关键词
NON-RECIPROCITY; MICROWAVE; CAVITY; WAVES;
D O I
10.1103/PhysRevA.106.032606
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Nonreciprocal systems breaking time-reversal symmetry are essential tools in modern quantum technologies enabling the suppression of unwanted reflected signals or extraneous noise entering through detection ports. Here we propose a scheme enabling nonreciprocal conversion between optical and radio-frequency (rf) photons using exclusively optomechanical and electromechanical interactions. The nonreciprocal transmission is obtained by interference of two dissipative pathways of transmission between the two electromagnetic modes established through two distinct intermediate mechanical modes. In our protocol, we apply a bichromatic drive to the cavity mode and a single-tone drive to the rf resonator, and use the relative phase between the drive tones to obtain nonreciprocity. We show that perfect nonreciprocal transduction can be obtained in the limit of large cooperativity in both directions, from optical to rf and vice versa. We also study the transducer noise and show that mechanical thermal noise is always reflected back onto the isolated port. In the limit of large cooperativity, the input noise is instead transmitted in an unaltered way in the allowed direction; in particular one has only vacuum noise in the output rf port in the case of optical-to-rf conversion.
引用
收藏
页数:12
相关论文
共 67 条
[1]   ON RECIPROCITY AND TIME-VARIABLE NETWORKS [J].
ANDERSON, BD ;
NEWCOMB, RW .
PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1965, 53 (10) :1674-&
[2]  
Andrews RW, 2014, NAT PHYS, V10, P321, DOI [10.1038/nphys2911, 10.1038/NPHYS2911]
[3]   FARADAY EFFECT OPTICAL ISOLATOR [J].
APLET, LJ ;
CARSON, JW .
APPLIED OPTICS, 1964, 3 (04) :544-&
[4]   Converting microwave and telecom photons with a silicon photonic nanomechanical interface [J].
Arnold, G. ;
Wulf, M. ;
Barzanjeh, S. ;
Redchenko, E. S. ;
Rueda, A. ;
Hease, W. J. ;
Hassani, F. ;
Fink, J. M. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[5]  
Auld B. A., 1959, IRE T MICROWAVE THEO, P238
[6]   Optical detection of radio waves through a nanomechanical transducer [J].
Bagci, T. ;
Simonsen, A. ;
Schmid, S. ;
Villanueva, L. G. ;
Zeuthen, E. ;
Appel, J. ;
Taylor, J. M. ;
Sorensen, A. ;
Usami, K. ;
Schliesser, A. ;
Polzik, E. S. .
NATURE, 2014, 507 (7490) :81-85
[7]  
Balram KC, 2016, NAT PHOTONICS, V10, P346, DOI [10.1038/NPHOTON.2016.46, 10.1038/nphoton.2016.46]
[8]   Mechanical on-chip microwave circulator [J].
Barzanjeh, S. ;
Wulf, M. ;
Peruzzo, M. ;
Kalaee, M. ;
Dieterle, P. B. ;
Painter, O. ;
Fink, J. M. .
NATURE COMMUNICATIONS, 2017, 8
[9]   Entangling optical and microwave cavity modes by means of a nanomechanical resonator [J].
Barzanjeh, Sh. ;
Vitali, D. ;
Tombesi, P. ;
Milburn, G. J. .
PHYSICAL REVIEW A, 2011, 84 (04)
[10]   Nonreciprocal reconfigurable microwave optomechanical circuit [J].
Bernier, N. R. ;
Toth, L. D. ;
Koottandavida, A. ;
Ioannou, M. A. ;
Malz, D. ;
Nunnenkamp, A. ;
Feofanov, A. K. ;
Kippenberg, T. J. .
NATURE COMMUNICATIONS, 2017, 8