On the Galois correspondence for Hopf Galois structures

被引:0
作者
Childs, Lindsay N. [1 ]
机构
[1] SUNY Albany, Dept Math & Stat, Albany, NY 12222 USA
来源
NEW YORK JOURNAL OF MATHEMATICS | 2017年 / 23卷
关键词
Hopf Galois extension; finite commutative nilpotent ring; Fundamental Theorem of Galois Theory; SEPARABLE FIELD-EXTENSIONS; RINGS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the question of the surjectivity of the Galois correspondence from subHopf algebras to subfields given by the Fundamental Theorem of Galois Theory for abelian Hopf Galois structures on a Galois extension of fields with Galois group Gamma, a finite abelian p-group. Applying the connection between regular subgroups of the holomorph of a finite abelian p-group (G, +) and associative, commutative nilpotent algebra structures A on (G, +), we show that if A gives rise to a H-Hopf Galois structure on L/K, then the K-subHopf algebras of H correspond to the ideals of A. Among the applications, we show that if G and Gamma are both elementary abelian p-groups, then the only Hopf Galois structure on L/K of type G for which the Galois correspondence is surjective is the classical Galois structure.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条