Paper-based analytical devices for point-of-care infectious disease testing

被引:59
作者
Rozand, C. [1 ]
机构
[1] bioMerieux, F-69280 Marcy Letoile, France
关键词
MICROFLUIDIC DEVICES; NETWORK FORMAT; WHOLE-BLOOD; STRIP; FLOW; SEPARATION; PLATFORM; PLASMA; OPPORTUNITIES; DIAGNOSIS;
D O I
10.1007/s10096-013-1945-2
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Paper-based devices provide an alternative technology for simple, low-cost, portable, and disposable or recyclable diagnostic tools for many applications, including clinical diagnosis, food quality control, and environmental monitoring. The present review focuses on new paper-based tests for point-of-care (POC) infectious disease testing. This review provides a brief presentation of the fabrication techniques and the main sample preparation procedures. Recent immunological and molecular testing formats based on new paper-based solutions which go beyond conventional lateral flow formats are also added. Emphasis is placed on how paper systems could be used for detecting whole and viable bacteria associated to infectious diseases. Paper has recently become attractive, since it is a ubiquitous and extremely cheap material. It is easy to store, easy to use, and is compatible with many (bio)chemical and (bio)medical applications. Paper absorbs and transports liquids by capillary force without additional mechanical assistance. Hence, paper-based analytical devices are promising and possibly game-changing, even if they still suffer from limitations, including accuracy and sensitivity. It is anticipated that, in the near future, with advances in fabrication procedures and associated analytical techniques, there will be a continuous flow of innovative paper-based diagnostics kits.
引用
收藏
页码:147 / 156
页数:10
相关论文
共 46 条
[1]   Multifunctional Analytical Platform on a Paper Strip: Separation, Preconcentration, and Subattomolar Detection [J].
Abbas, Abdennour ;
Brimer, Andrew ;
Slocik, Joseph M. ;
Tian, Limei ;
Naik, Rajesh R. ;
Singamaneni, Srikanth .
ANALYTICAL CHEMISTRY, 2013, 85 (08) :3977-3983
[2]   Inkjet-printed paperfluidic immuno-chemical sensing device [J].
Abe, Koji ;
Kotera, Kaori ;
Suzuki, Koji ;
Citterio, Daniel .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2010, 398 (02) :885-893
[3]   Development of automated paper-based devices for sequential multistep sandwich enzyme-linked immunosorbent assays using inkjet printing [J].
Apilux, Amara ;
Ukita, Yoshiaki ;
Chikae, Miyuki ;
Chailapakul, Orawon ;
Takamura, Yuzuru .
LAB ON A CHIP, 2013, 13 (01) :126-135
[4]   Paper Microzone Plates [J].
Carrilho, Emanuel ;
Phillips, Scott T. ;
Vella, Sarah J. ;
Martinez, Andres W. ;
Whitesides, George M. .
ANALYTICAL CHEMISTRY, 2009, 81 (15) :5990-5998
[5]   Understanding Wax Printing: A Simple Micropatterning Process for Paper-Based Microfluidics [J].
Carrilho, Emanuel ;
Martinez, Andres W. ;
Whitesides, George M. .
ANALYTICAL CHEMISTRY, 2009, 81 (16) :7091-7095
[6]  
Chamoles NA, 2001, CLIN CHEM, V47, P2098
[7]   Paper-Based ELISA [J].
Cheng, Chao-Min ;
Martinez, Andres W. ;
Gong, Jinlong ;
Mace, Charles R. ;
Phillips, Scott T. ;
Carrilho, Emanuel ;
Mirica, Katherine A. ;
Whitesides, George M. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (28) :4771-4774
[8]   Lab-on-a-chip devices for global health: Past studies and future opportunities [J].
Chin, Curtis D. ;
Linder, Vincent ;
Sia, Samuel K. .
LAB ON A CHIP, 2007, 7 (01) :41-57
[9]   A self-loading microfluidic device for determining the minimum inhibitory concentration of antibiotics [J].
Cira, Nate J. ;
Ho, Jack Y. ;
Dueck, Megan E. ;
Weibel, Douglas B. .
LAB ON A CHIP, 2012, 12 (06) :1052-1059
[10]   Isolation of plasma from whole blood using planar microfilters for lab-on-a-chip applications [J].
Crowley, TA ;
Pizziconi, V .
LAB ON A CHIP, 2005, 5 (09) :922-929