A new hybrid system was developed in this study for the treatment of drinking water consisting of pre coagulation using polyaluminium chloride (PACT) and membrane filtration (MF) with sponge cubes acting as biomass carriers (P-SMF). When compared to a conventional MF (CMF) and a MF after coagulation by utilizing PACT (P-MF), better removal of nutrients, UV254 and dissolved organic carbon (DOC) (>65%) was obtained from the P-SMF. The accumulation of biopolymers (including polysaccharides and proteins), humic substances, hydrophilic organics, and other small molecular weight (MW) organic matter in the CMF led to the most severe membrane fouling coupled with the highest pore blocking and cake resistance. Pre-coagulation was ineffective in eliminating small MW and hydrophilic organic matter. Conversely, the larger MW organics (i.e. biopolymers and humic substances), small MW organics and hydrophilic organic compounds could be removed in significantly larger quantities in the P-SMF by PACT coagulation. This was achieved via adsorption and the biodegradation by attached biomass on these sponges and by the suspended sludge. Further analyses of the microbial community indicated that the combined addition of PACl and sponges generated a high enrichment of Zoolgloea, Amaricoccus and Reyranella leading to the reduction of biopolymers, and Flexibacter and Sphingobium were linked to the degradation of humic substances. Moreover, some members of Alphaproteobacteria in the P-SMF may be responsible for the removal of low MW organics. These results suggest that the pre-coagulation process coupled with adding sponge in the MF system is a promising technology for mitigating membrane fouling. (C) 2019 Elsevier Ltd. All rights reserved.
机构:
Beijing Normal Univ, Sch Environm, State Key Lab Water Environm Simulat, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Sch Environm, State Key Lab Water Environm Simulat, Beijing 100875, Peoples R China
Zhang, Sen
Yang, Yu
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Sch Environm, State Key Lab Water Environm Simulat, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Sch Environm, State Key Lab Water Environm Simulat, Beijing 100875, Peoples R China
Yang, Yu
Takizawa, Satoshi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Grad Sch Engn, Dept Urban Engn, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, JapanBeijing Normal Univ, Sch Environm, State Key Lab Water Environm Simulat, Beijing 100875, Peoples R China
Takizawa, Satoshi
Hou, Li-an
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Sch Environm, State Key Lab Water Environm Simulat, Beijing 100875, Peoples R China
Xian High Tech Inst, Xian 710025, Shaanxi, Peoples R ChinaBeijing Normal Univ, Sch Environm, State Key Lab Water Environm Simulat, Beijing 100875, Peoples R China