Normal families of meromorphic functions concerning shared values

被引:5
|
作者
Ding, Jian-Jun [1 ]
Ding, Li-Wei [1 ]
Yuan, Wen-Jun [1 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
关键词
meromorphic function; normal family; shared values; DES VALEURS MULTIPLES; FONCTIONS ANALYTIQUES; CRITERIA; FAMILLES;
D O I
10.1080/17476933.2011.555644
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we prove the following normality criterion: let n2, m, k be three positive integers, and a be a non-zero complex number. Let F be a family of meromorphic functions in a domain D such that each fF has only zeros of multiplicity at least max{k,2}. If for each pair of f and g in F, f(m)(f((k)))(n) and g(m)(g((k)))(n) share the value a IM, then F is normal in D. This extends Hu and Meng's result.
引用
收藏
页码:113 / 121
页数:9
相关论文
共 50 条