Normal families of meromorphic functions concerning shared values

被引:5
作者
Ding, Jian-Jun [1 ]
Ding, Li-Wei [1 ]
Yuan, Wen-Jun [1 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
关键词
meromorphic function; normal family; shared values; DES VALEURS MULTIPLES; FONCTIONS ANALYTIQUES; CRITERIA; FAMILLES;
D O I
10.1080/17476933.2011.555644
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we prove the following normality criterion: let n2, m, k be three positive integers, and a be a non-zero complex number. Let F be a family of meromorphic functions in a domain D such that each fF has only zeros of multiplicity at least max{k,2}. If for each pair of f and g in F, f(m)(f((k)))(n) and g(m)(g((k)))(n) share the value a IM, then F is normal in D. This extends Hu and Meng's result.
引用
收藏
页码:113 / 121
页数:9
相关论文
共 21 条
[1]  
Alotaibi A., 2004, Comput. Methods Funct. Theory, V4, P227, DOI [10.1007/BF03321066, DOI 10.1007/BF03321066]
[2]  
[Anonymous], 1964, OXFORD MATH MONOGRAP
[3]  
[Anonymous], 1978, SCI SINICA A
[4]  
[Anonymous], ACTA MATH SIN
[5]  
CHEN HH, 1995, SCI CHINA SER A, V38, P789
[6]  
Hayman W. K., 1967, Research Problems in Function Theory
[7]   Normality criteria of meromorphic functions with multiple zeros [J].
Hu, Pei-Chu ;
Meng, Da-Wei .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 357 (02) :323-329
[8]  
[李国望 LI Guowang], 2008, [暨南大学学报. 自然科学与医学版, Journal of Jinan University], V29, P424
[9]   On normal families of meromorphic functions [J].
Li, Yuntong ;
Gu, Yonping .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 354 (02) :421-425
[10]   ON A TEST FOR THE NORMALITY OF FAMILIES OF HOLOMORPHIC-FUNCTIONS [J].
OSHKIN, IB .
RUSSIAN MATHEMATICAL SURVEYS, 1982, 37 (02) :237-238