Efficiency of producing random unitary matrices with quantum circuits

被引:25
作者
Arnaud, Ludovic [1 ]
Braun, Daniel [1 ]
机构
[1] Univ Toulouse, CNRS, Phys Theor Lab, IRSAMC,UPS, F-31062 Toulouse, France
来源
PHYSICAL REVIEW A | 2008年 / 78卷 / 06期
关键词
information theory; quantum computing; quantum gates; quantum theory;
D O I
10.1103/PhysRevA.78.062329
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the scaling of the convergence of several statistical properties of a recently introduced random unitary circuit ensemble towards their limits given by the circular unitary ensemble. Our study includes the full distribution of the absolute square of a matrix element, moments of that distribution up to order eight, as well as correlators containing up to 16 matrix elements in a given column of the unitary matrices. Our numerical scaling analysis shows that all of these quantities can be reproduced efficiently, with a number of random gates which scales at most as n(q)[ln(n(q)/epsilon)](nu) with the number of qubits n(q) for a given fixed precision epsilon and nu>0.
引用
收藏
页数:8
相关论文
共 28 条
[1]  
AMBAINIS A, 2004, P RANDOM CAMBR MA
[2]  
[Anonymous], 2000, QUANTUM SIGNATURES C
[3]   Distribution of interference in random quantum algorithms [J].
Arnaud, Ludovic ;
Braun, Daniel .
PHYSICAL REVIEW A, 2007, 75 (06)
[4]   Invariant integration over the unitary group [J].
Aubert, S ;
Lam, CS .
JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (12) :6112-6131
[5]   A UNIVERSAL 2-BIT GATE FOR QUANTUM COMPUTATION [J].
BARENCO, A .
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1995, 449 (1937) :679-683
[6]   ELEMENTARY GATES FOR QUANTUM COMPUTATION [J].
BARENCO, A ;
BENNETT, CH ;
CLEVE, R ;
DIVINCENZO, DP ;
MARGOLUS, N ;
SHOR, P ;
SLEATOR, T ;
SMOLIN, JA ;
WEINFURTER, H .
PHYSICAL REVIEW A, 1995, 52 (05) :3457-3467
[7]   Quantum pseudorandomness from cluster-state quantum computation [J].
Brown, Winton G. ;
Weinstein, Yaakov S. ;
Viola, Lorenza .
PHYSICAL REVIEW A, 2008, 77 (04)
[8]   The emergence of typical entanglement in two-party random processes [J].
Dahlsten, O. C. O. ;
Oliveira, R. ;
Plenio, M. B. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (28) :8081-8108
[9]  
DANKERT C, ARXIVQUANTPH0606161
[10]   QUANTUM-THEORY, THE CHURCH-TURING PRINCIPLE AND THE UNIVERSAL QUANTUM COMPUTER [J].
DEUTSCH, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1985, 400 (1818) :97-117