LEONARD PAIRS AND THE ASKEY-WILSON RELATIONS

被引:114
作者
Terwilliger, Paul [1 ]
Vidunas, Raimundas [2 ]
机构
[1] Univ Wisconsin, Dept Math, 480 Lincoln Dr, Madison, WI 53706 USA
[2] Univ Antwerp, RUCA, Dept Math & Comp Sci, B-2020 Antwerp, Belgium
关键词
Askey scheme; Askey-Wilson polynomial; q-Racah polynomial; Leonard pair; tridiagonal pair;
D O I
10.1142/S0219498804000940
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K denote a field and let V denote a vector space over K with finite positive dimension. We consider an ordered pair of linear transformations A:V -> V and A* : V -> V which satisfy the following two properties: (i) There exists a basis for $V$ with respect to which the matrix representing $A$ is irreducible tridiagonal and the matrix representing A* is diagonal. (ii) There exists a basis for V with respect to which the matrix representing A* is irreducible tridiagonal and the matrix representing A is diagonal. We call such a pair a Leonard pair on V. Referring to the above Leonard pair, we show there exists a sequence of scalars beta, gamma, gamma*,rho, rho*,omega, eta, eta* taken from K such that both A(2)A* - beta AA* A + A* A(2) - gamma(AA* + A*A) - rho A* = gamma* A(2) + omega A + eta I, A*(2) A - beta A* AA* + AA*(2) - gamma*(A*A + AA*) - rho*A = gamma A*(2) + omega A*+ eta*I. The sequence is uniquely determined by the Leonard pair provided the dimension of $V$ is at least 4. The equations above are called the Askey-Wilson relations.
引用
收藏
页码:411 / 426
页数:16
相关论文
共 39 条
[1]   SET OF ORTHOGONAL POLYNOMIALS THAT GENERALIZE THE RACAH COEFFICIENTS OR 6-J SYMBOLS [J].
ASKEY, R ;
WILSON, J .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1979, 10 (05) :1008-1016
[2]  
Bannai E, 1984, ALGEBRAIC COMBINATOR
[3]   The Terwilliger algebras of bipartite P- and Q-polynomial schemes [J].
Caughman, JS .
DISCRETE MATHEMATICS, 1999, 196 (1-3) :65-95
[4]   Distance-regular graphs related to the quantum enveloping algebra of sl(2) [J].
Curtin, B ;
Nomura, K .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2000, 12 (01) :25-36
[5]  
GASPER G, 1990, ENCY MATH ITS APPL, V35
[6]   MUTUAL INTEGRABILITY, QUADRATIC ALGEBRAS, AND DYNAMIC SYMMETRY [J].
GRANOVSKII, YI ;
LUTZENKO, IM ;
ZHEDANOV, AS .
ANNALS OF PHYSICS, 1992, 217 (01) :1-20
[7]   LINEAR COVARIANCE ALGEBRA FOR SLQ(2) [J].
GRANOVSKII, YI ;
ZHEDANOV, AS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (07) :L357-L359
[8]  
GRANOVSKY YI, 1988, ZH EKSP TEOR FIZ+, V94, P49
[9]  
Grunbaum F. A., 1998, BISPECTRAL PROBLEM M, P31
[10]  
Grunbaum F. A., 1999, ALGEBRAIC METHODS Q, P171