Inhibiting hot corrosion of molten Li2CO3-Na2CO3-K2CO3 salt through graphitization of construction materials for concentrated solar power

被引:43
作者
Grosu, Yaroslav [1 ]
Anagnostopoulos, Argyrios [2 ]
Navarro, Maria Elena [2 ]
Ding, Yulong [2 ]
Faik, Abdessamad [1 ]
机构
[1] Basque Res & Technol Alliance BRTA, Ctr Cooperat Res Alternat Energies CC EnergiGUNE, Alava Technol Pk,Albert Einstein 48, Vitoria 01510, Spain
[2] Univ Birmingham, BCES Birmingham Ctr Energy Storage, Birmingham, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Corrosion; Molten salt; Concentrated solar power; THERMAL-ENERGY STORAGE; HIGH-TEMPERATURE CORROSION; ALUMINA-FORMING ALLOYS; ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; AUSTENITIC STAINLESS-STEELS; HEAT-TRANSFER FLUIDS; NI-BASED ALLOYS; EUTECTIC SALT; CHLORIDE SALTS; NITRATE SALT;
D O I
10.1016/j.solmat.2020.110650
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Next-generation concentrated solar power (CSP) plants are expected to work above the current temperature limit of 565 degrees C for the benefit of enhanced efficiency. This poses significant challenges in the construction materials, among others, in terms of corrosion. In this work, we investigate the spray-graphitization method to improve the compatibility of SS310 and SS347 with molten Li2CO3-Na2CO3-K2CO3 carbonate salt. Improved compatibility was observed due to the formation of protective carbonate or carbide layers on SS347 and SS310 surfaces, respectively. Detailed characterization of the corrosion products, including chemical reactions and wettability allowed the mechanism of anticorrosion protection to be proposed, which could be used for other construction materials in direct contact with high-temperature molten salts for next-generation CSP plants and beyond.
引用
收藏
页数:12
相关论文
共 50 条
[21]   Wettability of molten Na2CO3-K2CO3 on coal fly ash ceramic substrates with expanded graphite [J].
Wang, Tieying ;
Wang, Kaichen ;
Zhang, Tianying ;
Ye, Feng ;
Liao, Zhirong ;
Xu, Chao .
MATERIALS CHEMISTRY AND PHYSICS, 2021, 258
[22]   Investigation on the local structure and properties of molten Li2CO3-K2CO3 binary salts by machine learning potentials [J].
Feng, Taixi ;
Yang, Bo ;
Lu, Guimin .
JOURNAL OF MOLECULAR LIQUIDS, 2022, 356
[23]   Corrosion behavior and strength degradation of Ti3SiC2 exposed to a eutectic K2CO3 and Li2CO3 mixture [J].
Liu, GM ;
Li, MS ;
Zhou, YC ;
Zhang, YM .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2003, 23 (11) :1957-1962
[24]   The corrosion behaviour of iron and chromium in molten (Li0.62K0.38)2CO3 [J].
Biedenkopf, P ;
Spiegel, M ;
Grabke, HJ .
ELECTROCHIMICA ACTA, 1998, 44 (04) :683-692
[25]   Corrosion effects of Na2CO3/NaCl molten salt eutectic on 316L stainless steel under isothermal and cycling conditions [J].
Lippiatt, Kaleb ;
Bell, Stuart ;
Will, Geoffrey ;
Steinberg, Ted .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2024, 272
[26]   Thermodynamic evaluation and optimization of the (Na2CO3+Na2SO4+Na2S+K2CO3+K2SO4+K2S)system [J].
Lindberg, Daniel ;
Backman, Rainer ;
Chartrand, Patrice .
JOURNAL OF CHEMICAL THERMODYNAMICS, 2007, 39 (06) :942-960
[27]   Enhanced thermal properties of Li2CO3–Na2CO3–K2CO3 nanofluids with nanoalumina for heat transfer in high-temperature CSP systems [J].
Zhaoli Zhang ;
Yanping Yuan ;
Liping Ouyang ;
Qinrong Sun ;
Xiaoling Cao ;
Sami Alelyani .
Journal of Thermal Analysis and Calorimetry, 2017, 128 :1783-1792
[28]   Thermodynamic evaluation and optimization of the (NaCl + Na2SO4+Na2CO3+KCl+K2SO4+K2CO3) system [J].
Lindberg, Daniel ;
Backman, Rainer ;
Chartrand, Patrice .
JOURNAL OF CHEMICAL THERMODYNAMICS, 2007, 39 (07) :1001-1021
[29]   Molecular dynamics analysis of thermophysical properties of Na2CO3-K2CO3 binary molten salts in temperature range of 1125-1475 K [J].
Cao, Lihua ;
Fang, Minghui ;
Song, Fenhong ;
Cong, Yu .
JOURNAL OF ENERGY STORAGE, 2023, 72
[30]   Corrosion mechanism of SS316L exposed to NaCl/Na2CO3 molten salt in air and argon environments [J].
Bell, S. ;
Jones, M. W. M. ;
Graham, E. ;
Peterson, D. J. ;
van Riessen, G. A. ;
Hinsley, G. ;
Steinberg, T. ;
Will, G. .
CORROSION SCIENCE, 2022, 195