Adaptive Reinforced Empirical Morlet Wavelet Transform and Its Application in Fault Diagnosis of Rotating Machinery

被引:19
作者
Xin, Yu [1 ]
Li, Shunming [1 ]
Zhang, Zongzhen [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Nanjing 210016, Jiangsu, Peoples R China
来源
IEEE ACCESS | 2019年 / 7卷
基金
中国国家自然科学基金;
关键词
Empirical wavelet transform; Morlet wavelet; spectral kurtosis; scale space representation; envelope spectrum; Pearson correlation coefficient; MODE DECOMPOSITION; SPECTRAL KURTOSIS; FEATURE-EXTRACTION; GEAR; SIGNAL;
D O I
10.1109/ACCESS.2019.2917042
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Identifying impact fault features from fault vibration signal is significantly meaningful for the fault diagnosis and condition monitoring of rotating machinery. Given defects and the working conditions, impact features are covered by background noise. A new method named empirical wavelet transform (EWT) has been receiving attention from the researchers and engineers. However, detecting boundaries by using the local maxima method from Fourier spectra and capturing the impact features through Meyer wavelet are the two crucial drawbacks of EWT. The former might be invalidated by the influence of non-stationary and noise frequency, and the latter is inappropriate for impact signal features. Therefore, reinforced empirical Morlet wavelet transform (REMWT) is proposed to overcome these shortcomings and efficiently diagnose fault features. In this method, the frequency spectrum boundaries are adaptively detected from the inner product of spectral kurtosis and Gaussian function via scale space representation, which can enhance the frequency character of impact features in vibration signals. Then, the constructed empirical Morlet wavelet serves as the adaptive filter bank for decomposing the signal into several empirical modes on the basis of spectrum boundaries. The meaningful component is selected via the maximum Pearson correlation coefficient method, and the envelope spectrum is used to accurately extract the fault features. The proposed method is then used to diagnose the fault features from the collected vibration signals. The results show its effectiveness and outstanding performance.
引用
收藏
页码:65150 / 65162
页数:13
相关论文
共 50 条
  • [41] Early Fault Diagnosis of Rolling Bearing based Empirical Wavelet Transform and Spectral Kurtosis
    Bai, Lin
    Xi, Wei
    2018 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2018,
  • [42] Review of local mean decomposition and its application in fault diagnosis of rotating machinery
    LI Yongbo
    SI Shubin
    LIU Zhiliang
    LIANG Xihui
    JournalofSystemsEngineeringandElectronics, 2019, 30 (04) : 799 - 814
  • [43] Differential time-frequency mode decomposition and its application in rotating machinery fault diagnosis
    Sun, Bin
    Li, Hongkun
    Wang, Junxiang
    Lv, Shuai
    Ma, Zhenhui
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 229
  • [44] A Novel Multisensor Fusion Transformer and Its Application Into Rotating Machinery Fault Diagnosis
    Weng, Chaoyang
    Lu, Baochun
    Gu, Qian
    Zhao, Xiaoli
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [45] Fault Diagnosis of Rotating Machinery: A Review and Bibliometric Analysis
    Chen, Jiayu
    Lin, Cuiying
    Peng, Di
    Ge, Hongjuan
    IEEE ACCESS, 2020, 8 : 224985 - 225003
  • [46] Iterative matching synchrosqueezing transform and application to rotating machinery fault diagnosis under nonstationary conditions
    Hua, Zehui
    Shi, Juanjuan
    Luo, Yang
    Huang, Weiguo
    Wang, Jun
    Zhu, Zhongkui
    MEASUREMENT, 2021, 173
  • [47] Application of Time-Frequency Analysis in Rotating Machinery Fault Diagnosis
    Bai, Yihao
    Cheng, Weidong
    Wen, Weigang
    Liu, Yang
    SHOCK AND VIBRATION, 2023, 2023
  • [48] Periodic impulses extraction based on improved adaptive VMD and sparse code shrinkage denoising and its application in rotating machinery fault diagnosis
    Li, Jimeng
    Yao, Xifeng
    Wang, Hui
    Zhang, Jinfeng
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 126 : 568 - 589
  • [49] New method for gear fault diagnosis using empirical wavelet transform, Hilbert transform, and cosine similarity metric
    Bettahar, Toufik
    Rahmoune, Chemseddine
    Benazzouz, Djamel
    Merainani, Boualem
    ADVANCES IN MECHANICAL ENGINEERING, 2020, 12 (06)
  • [50] Intelligent fault diagnosis of rotating machinery via wavelet transform, generative adversarial nets and convolutional neural network
    Liang, Pengfei
    Deng, Chao
    Wu, Jun
    Yang, Zhixin
    MEASUREMENT, 2020, 159