Isotropy of low redshift type Ia supernovae: A Bayesian analysis

被引:30
作者
Andrade, U. [1 ]
Bengaly, C. A. P. [2 ]
Alcaniz, J. S. [1 ,3 ,4 ]
Santos, B. [1 ]
机构
[1] Observ Nacl, BR-20921400 Rio De Janeiro, RJ, Brazil
[2] Univ Western Cape, Dept Phys & Astron, ZA-7535 Cape Town, South Africa
[3] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada
[4] Univ Fed Rio Grande do Norte, Dept Fis, BR-59072970 Natal, RN, Brazil
关键词
BULK FLOW; GALAXIES; UNIVERSE; INFERENCE; EFFICIENT; CLUSTERS; SKY;
D O I
10.1103/PhysRevD.97.083518
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The standard cosmology strongly relies upon the cosmological principle, which consists on the hypotheses of large scale isotropy and homogeneity of the Universe. Testing these assumptions is, therefore, crucial to determining if there are deviations from the standard cosmological paradigm. In this paper, we use the latest type Ia supernova compilations, namely JLA and Union2.1 to test the cosmological isotropy at low redshift ranges (z < 0.1). This is performed through a Bayesian selection analysis, in which we compare the standard, isotropic model, with another one including a dipole correction due to peculiar velocities. The full covariance matrix of SN distance uncertainties are taken into account. We find that the JLA sample favors the standard model, whilst the Union2.1 results are inconclusive, yet the constraints from both compilations are in agreement with previous analyses. We conclude that there is no evidence for a dipole anisotropy from nearby supernova compilations, albeit this test should be greatly improved with the much-improved data sets from upcoming cosmological surveys.
引用
收藏
页数:7
相关论文
共 64 条
  • [31] Narrowing down the possible explanations of cosmic acceleration with geometric probes
    Dhawan, Suhail
    Goobar, Ariel
    Mortsell, Edvard
    Amanullah, Rahman
    Feindt, Ulrich
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2017, (07):
  • [32] Measuring cosmic bulk flows with Type Ia supernovae from the Nearby Supernova Factory
    Feindt, U.
    Kerschhaggl, M.
    Kowalski, M.
    Aldering, G.
    Antilogus, P.
    Aragon, C.
    Bailey, S.
    Baltay, C.
    Bongard, S.
    Buton, C.
    Canto, A.
    Cellier-Holzem, F.
    Childress, M.
    Chotard, N.
    Copin, Y.
    Fakhouri, H. K.
    Gangler, E.
    Guy, J.
    Kim, A.
    Nugent, P.
    Nordin, J.
    Paech, K.
    Pain, R.
    Pecontal, E.
    Pereira, R.
    Perlmutter, S.
    Rabinowitz, D.
    Rigault, M.
    Runge, K.
    Saunders, C.
    Scalzo, R.
    Smadja, G.
    Tao, C.
    Thomas, R. C.
    Weaver, B. A.
    Wu, C.
    [J]. ASTRONOMY & ASTROPHYSICS, 2013, 560
  • [33] Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses
    Feroz, F.
    Hobson, M. P.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2008, 384 (02) : 449 - 463
  • [34] MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics
    Feroz, F.
    Hobson, M. P.
    Bridges, M.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 398 (04) : 1601 - 1614
  • [35] Feroz F., ARXIV13062144
  • [36] Supernovae anisotropy power spectrum
    Ghodsi, Hoda
    Baghram, Shant
    Habibi, Farhabg
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2017, (10):
  • [37] Determining the motion of the Solar system relative to the cosmic microwave background using Type Ia supernovae
    Gordon, Christopher
    Land, Kate
    Slosar, Abze
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2008, 387 (01) : 371 - 376
  • [38] HEALPix:: A framework for high-resolution discretization and fast analysis of data distributed on the sphere
    Górski, KM
    Hivon, E
    Banday, AJ
    Wandelt, BD
    Hansen, FK
    Reinecke, M
    Bartelmann, M
    [J]. ASTROPHYSICAL JOURNAL, 2005, 622 (02) : 759 - 771
  • [39] The dipole repeller
    Hoffman, Yehuda
    Pomarede, Daniel
    Tully, R. Brent
    Courtois, Helene M.
    [J]. NATURE ASTRONOMY, 2017, 1 (02):
  • [40] Hounsell R., ARXIV170201747