Multiphase-field modelling of crack propagation in geological materials and porous media with Drucker-Prager plasticity

被引:12
|
作者
Spaeth, Michael [1 ]
Herrmann, Christoph [1 ]
Prajapati, Nishant [1 ]
Schneider, Daniel [1 ,2 ]
Schwab, Felix [1 ]
Selzer, Michael [1 ,2 ]
Nestler, Britta [1 ,2 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Appl Mat IAM CMS, Str Forum 7, D-76131 Karlsruhe, Germany
[2] Karlsruhe Univ Appl Sci, Inst Digital Mat Sci IDM, Moltkestr 30, D-76133 Karlsruhe, Germany
关键词
Multiphase-field; Drucker-Prager plasticity; Brittle fracture; Elasto-plastic fracture; FRACTURE-TOUGHNESS; BRITTLE-FRACTURE; ELEMENT-METHOD; PHASE; ROCK; COALESCENCE; SIMULATION; FLUID; VEINS; PRINCIPLES;
D O I
10.1007/s10596-020-10007-0
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A multiphase-field approach for elasto-plastic and anisotropic brittle crack propagation in geological systems consisting of different regions of brittle and ductile materials is presented and employed to computationally study crack propagation. Plastic deformation in elasto-plastic materials such as frictional, granular or porous materials is modelled with the pressure-sensitive Drucker-Prager plasticity model. This plasticity model is combined with a multiphase-field model fulfilling the mechanical jump conditions in diffuse solid-solid interfaces. The validity of the plasticity model with phase-inherent stress and strain fields is shown, in comparison with sharp interface finite element solutions. The proposed model is capable of simulating crack formation in heterogeneous multiphase systems comprising both purely elastic and inelastic phases. We investigate the influence of different material parameters on the crack propagation with tensile tests in single- and two-phase materials. To show the applicability of the model, crack propagation in a multiphase domain with brittle and elasto-plastic components is performed.
引用
收藏
页码:325 / 343
页数:19
相关论文
共 13 条
  • [1] Multiphase-field modelling of crack propagation in geological materials and porous media with Drucker-Prager plasticity
    Michael Späth
    Christoph Herrmann
    Nishant Prajapati
    Daniel Schneider
    Felix Schwab
    Michael Selzer
    Britta Nestler
    Computational Geosciences, 2021, 25 : 325 - 343
  • [2] Effective strength of saturated double porous media with a Drucker-Prager solid phase
    Shen, Wanqing
    He, Zheng
    Dormieux, Luc
    Kondo, Djimedo
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2014, 38 (03) : 281 - 296
  • [3] Evaluation and improvement of macroscopic yield criteria of porous media having a Drucker-Prager matrix
    Shen, W. Q.
    Shao, J. F.
    Liu, Z. B.
    Oueslati, A.
    De Saxce, G.
    INTERNATIONAL JOURNAL OF PLASTICITY, 2020, 126
  • [4] Phase field modelling of crack propagation in functionally graded materials
    Hirshikesh
    Natarajan, Sundararajan
    Annabattula, Ratna K.
    Martinez-Paneda, Emilio
    COMPOSITES PART B-ENGINEERING, 2019, 169 : 239 - 248
  • [5] Adaptive phase field modelling of crack propagation in orthotropic functionally graded materials
    Hirshikesh
    Martinez-Paneda, Emilio
    Natarajan, Sundararajan
    DEFENCE TECHNOLOGY, 2021, 17 (01) : 185 - 195
  • [6] Phase-field fracture modelling of crack nucleation and propagation in porous rock
    Spetz, Alex
    Denzer, Ralf
    Tudisco, Erika
    Dahlblom, Ola
    INTERNATIONAL JOURNAL OF FRACTURE, 2020, 224 (01) : 31 - 46
  • [7] Numerical study on crack propagation in linear elastic multiphase composite materials using phase field method
    Li, Xiang
    Chu, Dongyang
    Gao, Yue
    Liu, Zhanli
    ENGINEERING COMPUTATIONS, 2019, 36 (01) : 307 - 333
  • [8] Dynamic crack propagation in elasto-plastic materials using phase-field virtual modelling method
    Liu, Yiyang
    Feng, Yuan
    Wu, Zhangming
    Alamdari, Mehrisadat Makki
    Wu, Di
    Luo, Zhen
    Chen, Xiaojun
    Gao, Wei
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 429
  • [9] Hydro-mechanical modeling of cohesive crack propagation in multiphase porous media using the extended finite element method
    Mohammadnejad, T.
    Khoei, A. R.
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2013, 37 (10) : 1247 - 1279
  • [10] A Partition of Unity-Based Model for Crack Nucleation and Propagation in Porous Media, Including Orthotropic Materials
    Remij, Ernst W.
    Remmers, Joris J. C.
    Pizzocolo, Francesco
    Smeulders, David M. J.
    Huyghe, Jacques M.
    TRANSPORT IN POROUS MEDIA, 2015, 106 (03) : 505 - 522