Comparison of 26 Sphingomonad Genomes Reveals Diverse Environmental Adaptations and Biodegradative Capabilities

被引:140
作者
Aylward, Frank O. [1 ,2 ]
McDonald, Bradon R. [1 ]
Adams, Sandra M. [1 ,2 ]
Valenzuela, Alejandra [1 ,2 ]
Schmidt, Rebeccah A. [1 ,2 ]
Goodwin, Lynne A. [4 ,5 ]
Woyke, Tanja [5 ]
Currie, Cameron R. [1 ,2 ]
Suen, Garret [1 ,2 ]
Poulsen, Michael [1 ,2 ,3 ]
机构
[1] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA
[3] Univ Copenhagen, Dept Biol, Sect Ecol & Evolut, Copenhagen East, Denmark
[4] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA
[5] DOE Joint Genome Inst, Walnut Creek, CA USA
关键词
MULTIPLE SEQUENCE ALIGNMENT; OPERON COPY NUMBER; OLIGOTROPHIC ULTRAMICROBACTERIUM; WHOLE GENOME; STRAIN; SPHINGOBIUM; NOVOSPHINGOBIUM; DEGRADATION; METABOLISM; SPHINGOPYXIS;
D O I
10.1128/AEM.00518-13
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Sphingomonads comprise a physiologically versatile group within the Alphaproteobacteria that includes strains of interest for biotechnology, human health, and environmental nutrient cycling. In this study, we compared 26 sphingomonad genome sequences to gain insight into their ecology, metabolic versatility, and environmental adaptations. Our multilocus phylogenetic and average amino acid identity (AAI) analyses confirm that Sphingomonas, Sphingobium, Sphingopyxis, and Novosphingobium are well-resolved monophyletic groups with the exception of Sphingomonas sp. strain SKA58, which we propose belongs to the genus Sphingobium. Our pan-genomic analysis of sphingomonads reveals numerous species-specific open reading frames (ORFs) but few signatures of genus-specific cores. The organization and coding potential of the sphingomonad genomes appear to be highly variable, and plasmid-mediated gene transfer and chromosome-plasmid recombination, together with prophage- and transposon-mediated rearrangements, appear to play prominent roles in the genome evolution of this group. We find that many of the sphingomonad genomes encode numerous oxygenases and glycoside hydrolases, which are likely responsible for their ability to degrade various recalcitrant aromatic compounds and polysaccharides, respectively. Many of these enzymes are encoded on megaplasmids, suggesting that they may be readily transferred between species. We also identified enzymes putatively used for the catabolism of sulfonate and nitroaromatic compounds in many of the genomes, suggesting that plant-based compounds or chemical contaminants may be sources of nitrogen and sulfur. Many of these sphingomonads appear to be adapted to oligotrophic environments, but several contain genomic features indicative of host associations. Our work provides a basis for understanding the ecological strategies employed by sphingomonads and their role in environmental nutrient cycling.
引用
收藏
页码:3724 / 3733
页数:10
相关论文
共 70 条
[1]   PhiSpy: a novel algorithm for finding prophages in bacterial genomes that combines similarity- and composition-based strategies [J].
Akhter, Sajia ;
Aziz, Ramy K. ;
Edwards, Robert A. .
NUCLEIC ACIDS RESEARCH, 2012, 40 (16) :e126
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]   Genome Sequence of Sphingobium indicum B90A, a Hexachlorocyclohexane-Degrading Bacterium [J].
Anand, Shailly ;
Sangwan, Naseer ;
Lata, Pushp ;
Kaur, Jasvinder ;
Dua, Ankita ;
Singh, Amit Kumar ;
Verma, Mansi ;
Kaur, Jaspreet ;
Khurana, Jitendra P. ;
Khurana, Paramjit ;
Mathur, Saloni ;
Lal, Rup .
JOURNAL OF BACTERIOLOGY, 2012, 194 (16) :4471-4472
[4]  
[Anonymous], 2005, PHYLIP (phylogeny inference package) version 3.6
[5]  
Balkwill D.L., 2006, The prokaryotes, V7, P605, DOI [DOI 10.1007/0-387-30747-8_23, 10.1007/0-387-30747-8_23]
[6]   Taxonomic study of aromatic-degrading bacteria from deep-terrestrial-subsurface sediments and description of Sphingomonas aromaticivorans sp nov, Sphingomonas subterranea sp nov, and Sphingomonas stygia sp nov [J].
Balkwill, DL ;
Drake, GR ;
Reeves, RH ;
Fredrickson, JK ;
White, DC ;
Ringelberg, DB ;
Chandler, DP ;
Romine, MF ;
Kennedy, DW ;
Spadoni, CM .
INTERNATIONAL JOURNAL OF SYSTEMATIC BACTERIOLOGY, 1997, 47 (01) :191-201
[7]   Detection and characterization of conjugative degradative plasmids in xenobiotic-degrading Sphingomonas strains [J].
Basta, T ;
Keck, A ;
Klein, J ;
Stolz, A .
JOURNAL OF BACTERIOLOGY, 2004, 186 (12) :3862-3872
[8]   Twenty-One Genome Sequences from Pseudomonas Species and 19 Genome Sequences from Diverse Bacteria Isolated from the Rhizosphere and Endosphere of Populus deltoides [J].
Brown, Steven D. ;
Utturkar, Sagar M. ;
Klingeman, Dawn M. ;
Johnson, Courtney M. ;
Martin, Stanton L. ;
Land, Miriam L. ;
Lu, Tse-Yuan S. ;
Schadt, Christopher W. ;
Doktycz, Mitchel J. ;
Pelletier, Dale A. .
JOURNAL OF BACTERIOLOGY, 2012, 194 (21) :5991-5993
[9]   The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics [J].
Cantarel, Brandi L. ;
Coutinho, Pedro M. ;
Rancurel, Corinne ;
Bernard, Thomas ;
Lombard, Vincent ;
Henrissat, Bernard .
NUCLEIC ACIDS RESEARCH, 2009, 37 :D233-D238
[10]   Life under nutrient limitation in oligotrophic marine environments:: An eco/physiological perspective of Sphingopyxis alaskensis (formerly Sphingomonas alaskensis) [J].
Cavicchioli, R ;
Ostrowski, M ;
Fegatella, F ;
Goodchild, A ;
Guixa-Boixereu, N .
MICROBIAL ECOLOGY, 2003, 45 (03) :203-217