Topological lattice actions for the 2d XY model

被引:10
作者
Bietenholz, W. [1 ]
Boegli, M. [2 ]
Niedermayer, F. [2 ,3 ]
Pepe, M. [4 ]
Rejon-Barrera, F. G. [1 ]
Wiese, U. -J. [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico
[2] Univ Bern, Albert Einstein Ctr Fundamental Phys, Inst Theoret Phys, CH-3012 Bern, Switzerland
[3] Eotvos Lorand Univ, Inst Theoret Phys HAS, H-1117 Budapest, Hungary
[4] Sez Milano Bicocca, INFN, I-20126 Milan, Italy
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2013年 / 03期
关键词
Nonperturbative Effects; Lattice Quantum Field Theory; Field Theories in Lower Dimensions; Sigma Models; 2-DIMENSIONAL STEP MODEL; NONLINEAR SIGMA-MODEL; MONTE-CARLO; CRITICAL-BEHAVIOR; LOGARITHMIC CORRECTIONS; UNIVERSALITY CLASS; PHASE-TRANSITIONS; SCALING FUNCTIONS; EXCITED-STATES; SYSTEMS;
D O I
10.1007/JHEP03(2013)141
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider the 2d XY Model with topological lattice actions, which are invariant against small deformations of the field configuration. These actions constrain the angle between neighbouring spins by an upper bound, or they explicitly suppress vortices (and anti-vortices). Although topological actions do not have a classical limit, they still lead to the universal behaviour of the Berezinskii-Kosterlitz-Thouless (BKT) phase transition - at least up to moderate vortex suppression. In the massive phase, the analytically known Step Scaling Function (SSF) is reproduced in numerical simulations. However, deviations from the expected universal behaviour of the lattice artifacts are observed. In the massless phase, the BKT value of the critical exponent eta(c) is confirmed. Hence, even though for some topological actions vortices cost zero energy, they still drive the standard BKT transition. In addition we identify a vortex-free transition point, which deviates from the BKT behaviour.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Tensor renormalization group study of classical XY model on the square lattice
    Yu, J. F.
    Xie, Z. Y.
    Meurice, Y.
    Liu, Yuzhi
    Denbleyker, A.
    Zou, Haiyuan
    Qin, M. P.
    Chen, J.
    Xiang, T.
    [J]. PHYSICAL REVIEW E, 2014, 89 (01):
  • [32] Renormalization and running in the 2D CP (1) model
    Diego Buccio
    John F. Donoghue
    Gabriel Menezes
    Roberto Percacci
    [J]. Journal of High Energy Physics, 2025 (2)
  • [33] Topological phase transition in 2D quantum Josephson array
    Belousov, AI
    Lozovik, YE
    [J]. SOLID STATE COMMUNICATIONS, 1996, 100 (06) : 421 - 426
  • [34] Wave propagation for a reaction-diffusion model with a quiescent stage on a 2D spatial lattice
    Zhao, Hai-Qin
    Wu, Shi-Liang
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (02) : 1178 - 1191
  • [35] Uncovering the secrets of the 2D random-bond Blume-Capel model
    Malakis, A.
    Berker, A. Nihat
    Hadjiagapiou, I. A.
    Fytas, N. G.
    Papakonstantinou, T.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (15) : 2930 - 2933
  • [36] Infrared phases of 2d QCD
    Delmastro, Diego
    Gomis, Jaume
    Yu, Matthew
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (02)
  • [37] Spin superfluidity in the anisotropic XY model in the triangular lattice
    Lima, L. S.
    [J]. SOLID STATE COMMUNICATIONS, 2016, 239 : 5 - 8
  • [38] Stiffness jump in the generalized XY model on the square lattice
    Huebscher, David M.
    Wessel, Stefan
    [J]. PHYSICAL REVIEW E, 2013, 87 (06):
  • [39] Exact lattice chiral symmetry in 2D gauge theory
    Berkowitz, Evan
    Cherman, Aleksey
    Jacobson, Theodore
    [J]. PHYSICAL REVIEW D, 2024, 110 (01)
  • [40] 2D COULOMB GAS, ABRIKOSOV LATTICE AND RENORMALIZED ENERGY
    Serfaty, S.
    [J]. XVIITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2014, : 584 - 599