Granular scaling laws for helically driven dynamics

被引:15
作者
Thoesen, Andrew [1 ]
McBryan, Teresa [1 ]
Mick, Darwin [1 ]
Green, Marko [1 ]
Martia, Justin [1 ]
Marvi, Hamid [1 ]
机构
[1] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA
关键词
LOCOMOTION; SAND; PERFORMANCE; VEHICLE; WHEELS;
D O I
10.1103/PhysRevE.102.032902
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Exploration of granular physics for three-dimensional geometries interacting with deformable media is crucial for further understanding of granular mechanics and vehicle-terrain dynamics. A modular screw propelled vehicle is, therefore, designed for testing the accuracy of a novel helical granular scaling law in predicting vehicle translational velocity and power. A dimensional analysis is performed on the vehicle and screw pontoons. Two additional pontoon pairs of increased size and mass are determined from dimensional scalars. The power and velocity of these larger pairs are predicted by the smaller pair using the scaling relationships. All three sets are subjected to ten trials of five angular velocities ranging from 13.7 to 75.0 revolutions per minute in a high interlock lunar regolith analog derived from mining tailings. Experimental agreement for prediction of power (3-9% error) and translational velocity (2-12% error) are observed. A similar set of geometries is subjected to multibody dynamics and discrete element method cosimulations of Earth and lunar gravity to verify a gravity-dependent subset of the scaling laws. These simulations show agreement (under 5% error for all sets) and support law validity for gravity between Earth and lunar magnitude. These results support further expansion of granular scaling models to enable prediction for vehicle-terrain dynamics for a variety of environments and geometries.
引用
收藏
页数:8
相关论文
共 38 条
[1]   Modeling of the interaction of rigid wheels with dry granular media [J].
Agarwal, Shashank ;
Senatore, Carmine ;
Zhang, Tingnan ;
Kingsbury, Mark ;
Iagnemma, Karl ;
Goldman, Daniel, I ;
Kamrin, Ken .
JOURNAL OF TERRAMECHANICS, 2019, 85 :1-14
[2]  
[Anonymous], 1956, Theory of Land Locomotion
[3]  
[Anonymous], 2013, WOODHEAD PUBL SER EN
[4]  
Askari H, 2016, NAT MATER, V15, P1274, DOI [10.1038/NMAT4727, 10.1038/nmat4727]
[5]  
BEKKER MG, 1964, SAE TRANSACTIONS, V72, P549
[6]   Helical Locomotion in a Granular Medium [J].
Darbois Texier, Baptiste ;
Ibarra, Alejandro ;
Melo, Francisco .
PHYSICAL REVIEW LETTERS, 2017, 119 (06)
[7]   Mechanics of Undulatory Swimming in a Frictional Fluid [J].
Ding, Yang ;
Sharpe, Sarah S. ;
Masse, Andrew ;
Goldman, Daniel I. .
PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (12)
[8]   Drag Induced Lift in Granular Media [J].
Ding, Yang ;
Gravish, Nick ;
Goldman, Daniel I. .
PHYSICAL REVIEW LETTERS, 2011, 106 (02)
[9]   Continuum modeling of projectile impact and penetration in dry granular media [J].
Dunatunga, Sachith ;
Kamrin, Ken .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2017, 100 :45-60
[10]   Continuum modelling and simulation of granular flows through their many phases [J].
Dunatunga, Sachith ;
Kamrin, Ken .
JOURNAL OF FLUID MECHANICS, 2015, 779 :483-513