Multiple drug resistance of cancer cells is multifactorial. A microarray technique may provide information about new candidate genes playing a role in drug resistance. Drug membrane transporters from ABC and SLC families play a main role in this phenomenon. This study demonstrates alterations in ABC and SLC gene expression levels in methotrexate, cisplatin, doxorubicin, vincristine, topotecan and paclitaxel-resistant variant of W1 ovarian cancer cell line. Resistant W1 cell lines were derived by stepwise selection of cells in increasing concentration of drugs. Affymetrix GeneChip (R) Human Genome U219 Array Strip was used for hybridizations. Statistical significance was determined by independent sample t-test. The genes having altered expression levels in drug-resistant sublines were selected and filtered by scater plot. Genes up/downregulated more than threefolds were selected and listed. Among ABC genes, seven were upregulated and three were downregulated. Three genes: ABCB1, ABCB4 and ABCG2 were upregulated very significantly (over tenfold). One ABCA8 was significantly downregulated. Among 38 SLC genes, 18 were upregulated, 16 were downregulated and four were up-or downregulated dependent on the cell line. Expression of 10 SLC genes was changed very significantly (over tenfold). Four genes were significantly increased: SLC6A1, SLC9A2, SLC12A1, SLC16A6 and six genes were significantly decreased: SLC2A14, SLC7A3, SLC7A8, SLC7A11, SLC16A14, SLC38A9. Based on the expression profiles, our results provide a preliminary insight into the relationship between drug resistance and expression of membrane transporters involved in drug resistance. Correlation of specific drug transporter with drug resistance requires further analysis. (C) 2013 Elsevier Masson SAS. All rights reserved.