Acoustic radiation- and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane

被引:219
作者
Barnkob, Rune [1 ]
Augustsson, Per [2 ]
Laurell, Thomas [2 ,3 ]
Bruus, Henrik [4 ]
机构
[1] Tech Univ Denmark, Dept Micro & Nanotechnol, DK-2800 Lyngby, Denmark
[2] Lund Univ, Div Nanobiotechnol, Dept Measurement Technol & Ind Elect Engn, S-22100 Lund, Sweden
[3] Dongguk Univ, Dept Biomed Engn, Seoul, South Korea
[4] Tech Univ Denmark, Dept Phys, DK-2800 Lyngby, Denmark
来源
PHYSICAL REVIEW E | 2012年 / 86卷 / 05期
基金
瑞典研究理事会;
关键词
STANDING-WAVE; SURFACE; DRIVEN; CELLS; RESONANCES; CAPTURE; SPHERE; FORCES;
D O I
10.1103/PhysRevE.86.056307
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present microparticle image velocimetry measurements of suspended microparticles of diameters from 0.6 to 10 mu m undergoing acoustophoresis in an ultrasound symmetry plane in a microchannel. The motion of the smallest particles is dominated by the Stokes drag from the induced acoustic streaming flow, while the motion of the largest particles is dominated by the acoustic radiation force. For all particle sizes we predict theoretically how much of the particle velocity is due to radiation and streaming, respectively. These predictions include corrections for particle-wall interactions and ultrasonic thermoviscous effects and match our measurements within the experimental uncertainty. Finally, we predict theoretically and confirm experimentally that the ratio between the acoustic radiation-and streaming-induced particle velocities is proportional to the actuation frequency, the acoustic contrast factor, and the square of the particle size, while it is inversely proportional to the kinematic viscosity.
引用
收藏
页数:11
相关论文
共 42 条
[1]   High-throughput, temperature-controlled microchannel acoustophoresis device made with rapid prototyping [J].
Adams, Jonathan D. ;
Ebbesen, Christian L. ;
Barnkob, Rune ;
Yang, Allen H. J. ;
Soh, H. Tom ;
Bruus, Henrik .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2012, 22 (07)
[2]  
[Anonymous], 2012, CRC HDB CHEM PHYS, V92nd
[3]   Microfluidic, Label-Free Enrichment of Prostate Cancer Cells in Blood Based on Acoustophoresis [J].
Augustsson, Per ;
Magnusson, Cecilia ;
Nordin, Maria ;
Lilja, Hans ;
Laurell, Thomas .
ANALYTICAL CHEMISTRY, 2012, 84 (18) :7954-7962
[4]   Acoustofluidics 11: Affinity specific extraction and sample decomplexing using continuous flow acoustophoresis [J].
Augustsson, Per ;
Laurell, Thomas .
LAB ON A CHIP, 2012, 12 (10) :1742-1752
[5]  
Augustsson P, 2011, LAB CHIP, V11, P4152, DOI [10.1039/c1lc20637k, 10.1039/C1lc20637k]
[6]   Measuring acoustic energy density in microchannel acoustophoresis using a simple and rapid light-intensity method [J].
Barnkob, Rune ;
Iranmanesh, Ida ;
Wiklund, Martin ;
Bruus, Henrik .
LAB ON A CHIP, 2012, 12 (13) :2337-2344
[7]   Measuring the local pressure amplitude in microchannel acoustophoresis [J].
Barnkob, Rune ;
Augustsson, Per ;
Laurell, Thomas ;
Bruus, Henrik .
LAB ON A CHIP, 2010, 10 (05) :563-570
[8]   BROWNIAN DIFFUSION OF PARTICLES WITH HYDRODYNAMIC INTERACTION [J].
BATCHELOR, GK .
JOURNAL OF FLUID MECHANICS, 1976, 74 (MAR9) :1-29
[9]   Ultrasonic agitation in microchannels [J].
Bengtsson, M ;
Laurell, T .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2004, 378 (07) :1716-1721
[10]  
Bergmann L., 1954, ULTRASCHALL SEINE AN, V6th