Three Topological Results on the Twistor Discriminant Locus in the 4-Sphere

被引:2
|
作者
Altavilla, Amedeo [1 ]
Ballico, Edoardo [2 ]
机构
[1] Univ Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Via Brecce Bianche, I-60131 Ancona, Italy
[2] Univ Trento, Dipartimento Matemat, Via Sommar 14, I-38123 Povo, Trento, Italy
关键词
Twistor fibration; dimension algebraic varieties; stability; discriminant locus of cones; SURFACES; METRICS;
D O I
10.1007/s00032-019-00292-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We exploit techniques from classical (real and complex) algebraic geometry for the study of the standard twistor fibration :CP3S4. We prove three results about the topology of the twistor discriminant locus of an algebraic surface in CP3. First of all we prove that, with the exception of two special cases, the real dimension of the twistor discriminant locus of an algebraic surface is always equal to 2. Secondly we describe the possible intersections of a general surface with the family of twistor lines: we find that only 4 configurations are possible and for each of them we compute the dimension. Lastly we give a decomposition of the twistor discriminant locus of a given cone in terms of its singular locus and its dual variety.
引用
收藏
页码:57 / 72
页数:16
相关论文
共 5 条
  • [1] Three Topological Results on the Twistor Discriminant Locus in the 4-Sphere
    Amedeo Altavilla
    Edoardo Ballico
    Milan Journal of Mathematics, 2019, 87 : 57 - 72
  • [2] On the index of minimal 2-tori in the 4-sphere
    Kusner, Rob
    Wang, Peng
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024, 2024 (806): : 9 - 22
  • [3] Unknotting numbers of 2-spheres in the 4-sphere
    Joseph, Jason M.
    Klug, Michael R.
    Ruppik, Benjamin M.
    Schwartz, Hannah R.
    JOURNAL OF TOPOLOGY, 2021, 14 (04) : 1321 - 1350
  • [4] On the regularity of the space of harmonic 2-spheres in the 4-sphere
    Bolton, J.
    Fernandez, L.
    HARMONIC MAPS AND DIFFERENTIAL GEOMETRY, 2011, 542 : 187 - +
  • [5] THE QUATERNIONIC KP HIERARCHY AND CONFORMALLY IMMERSED 2-TORI IN THE 4-SPHERE
    McIntosh, Ian
    TOHOKU MATHEMATICAL JOURNAL, 2011, 63 (02) : 183 - 215