Large-area manganese oxide nanorod arrays as efficient electrocatalyst for oxygen evolution reaction

被引:33
作者
Chen, Shuang [1 ]
Zhai, Teng [2 ]
Lu, Xi-Hong [2 ]
Zhang, Man-Zhi [1 ]
Li, Zhuo-Ying [1 ]
Xu, Chang-Wei [1 ]
Tong, Yexiang [2 ]
机构
[1] Guangzhou Univ, Sch Chem & Chem Engn, Guangzhou 510006, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Sch Chem & Chem Engn, Inst Optoelect & Funct Composite Mat, MOE Key Lab Bioinorgan & Synthet Chem, Guangzhou 510275, Guangdong, Peoples R China
关键词
Oxygen evolution reaction; Manganese oxide; Nanorod arrays; ELECTROCHEMICAL SYNTHESIS; COBALT OXIDE; WATER; ELECTRODES; DEPOSITION; CATALYST; FACILE; CUXCO3-XO4; NICKEL;
D O I
10.1016/j.ijhydene.2012.06.059
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Large-area manganese oxide nanorod arrays (MnO2 NRAs) have been directly grown vertically on Ti foil with a uniform length and diameter by a simple electrochemical method without any templates. The deposition temperature is one of the most important parameters for formation MnO2 NRAs and at 25 degrees C no MnO2 NRAs can be obtained. The results show that MnO2 has high activity and good stability for oxygen evolution reaction (OER) and the structure of nanorod arrays pronounced enhances MnO2 activity. The onset potential of MnO2 NRAs is lower than that of Pt foil and lower 401 mV than that of MnO2 film, indicating that the structure of MnO2 NRAs shows an easy OER for water split. The MnO2 NRAs may be of great potential in electrochemical water split. Crown Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:13350 / 13354
页数:5
相关论文
共 39 条
[1]   P-type 3C-SiC nanowires and their optical and electrical transport properties [J].
Chen, Youqiang ;
Zhang, Xinni ;
Zhao, Qing ;
He, Li ;
Huang, Chengkuang ;
Xie, Zhipeng .
CHEMICAL COMMUNICATIONS, 2011, 47 (22) :6398-6400
[2]   Cations distribution of CuxCo3-xO4 and its electrocatalytic activities for oxygen evolution reaction [J].
Chi, Bo ;
Lin, Hong ;
Li, Jianbao .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (18) :4763-4768
[3]   Ultralow overpotentials for oxygen evolution reactions achieved by nickel cobaltite aerogels [J].
Chien, Hsing-Chi ;
Cheng, Wei-Yun ;
Wang, Yong-Hui ;
Wei, Te-Yu ;
Lu, Shih-Yuan .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (45) :18180-18182
[4]   Enhanced water electrolysis: Electrocatalytic generation of oxygen gas at manganese oxide nanorods modified electrodes [J].
El-Deab, Mohamed S. ;
Awad, Mohamed I. ;
Mohammad, Ahmad M. ;
Ohsaka, Takeo .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (08) :2082-2087
[5]   Surface, kinetics and electrocatalytic properties of the Ti/Ti + Ru+Ce)O2-system for the oxygen evolution reaction in alkaline medium [J].
Fernandes, KC ;
Da Silva, LM ;
Boodts, JFC ;
De Faria, LA .
ELECTROCHIMICA ACTA, 2006, 51 (14) :2809-2818
[6]   Analysis of the operation of thin nanowire photoelectrodes for solar energy conversion [J].
Foley, Justin M. ;
Price, Michelle J. ;
Feldblyum, Jeremy I. ;
Maldonado, Stephen .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (01) :5203-5220
[7]   Electrochemical study of La0.6Sr0.4Co0.8Fe0.2O3 during oxygen evolution reaction [J].
Garcia, Eric M. ;
Taroco, Hosane A. ;
Matencio, Tulio ;
Domingues, Rosana Z. ;
dos Santos, Jacqueline A. F. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (08) :6400-6406
[8]   Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review [J].
Gonzalez-Valls, Irene ;
Lira-Cantu, Monica .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (01) :19-34
[9]   A Bifunctional Nonprecious Metal Catalyst for Oxygen Reduction and Water Oxidation [J].
Gorlin, Yelena ;
Jaramillo, Thomas F. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (39) :13612-13614
[10]   NI(OH)2-IMPREGNATED ANODES FOR ALKALINE WATER ELECTROLYSIS [J].
HALL, DE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1983, 130 (02) :317-321