The Classification of Stored Grain Pests based on Convolutional Neural Network

被引:0
|
作者
Zhang, Dexian [1 ]
Zhao, Wenjun [1 ]
机构
[1] Henan Univ Technol, Sch Informat Sci & Engn, Zhengzhou 450001, Henan, Peoples R China
来源
2017 2ND INTERNATIONAL CONFERENCE ON MECHATRONICS AND INFORMATION TECHNOLOGY (ICMIT 2017) | 2017年
关键词
Deep Learning; Convolutional Neural network; Stored-grain Pests Recognition; Feature Extration;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
With the advent of the era of big data, convolutional neural network (CNN) of deep learning has been widely used in the field of image recognition. The CNN has higher recognition rate and faster extraction speed of characteristic than traditional machines in learning methods. The CNNs theory is introduced for the recognition of stored grain pests in the granary environment. Firstly, stored grain images with pests are normalized and the implicit characteristics are extracted using a trained convolution kernel. Then, the maximum pool method is used to reduce the dimensionality of the extracted features. Finally, the Softmax classifier is used to classify the image of the test sample. The results show that CNN has a good ability to identify reserves and generalization ability.
引用
收藏
页码:426 / 433
页数:8
相关论文
共 50 条
  • [21] Convolutional Neural Network-based Jaywalking Data Generation and Classification
    Park, Jaeseo
    Lee, Yunsoo
    Heo, Jun Ho
    Kang, Suk-Ju
    2019 INTERNATIONAL SOC DESIGN CONFERENCE (ISOCC), 2019, : 132 - 133
  • [22] A New Mammography Lesion Classification Method Based on Convolutional Neural Network
    Wei, XinLei
    Ma, YiDe
    Wang, RunZe
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND SOFT COMPUTING (ICMLSC 2019), 2019, : 39 - 43
  • [23] Wearable Sport Activity Classification Based on Deep Convolutional Neural Network
    Hsu, Yu-Liang
    Chang, Hsing-Cheng
    Chiu, Yung-Jung
    IEEE ACCESS, 2019, 7 : 170199 - 170212
  • [24] Convolutional Neural Network for Octave Illusion Classification
    Pilyugina N.
    Tsukahara A.
    Tanaka K.
    IEEJ Transactions on Electronics, Information and Systems, 2022, 142 (05) : 543 - 549
  • [25] A Study on Image Based Gender Classification Using Convolutional Neural Network
    Nie, Yining
    Liang, Bin
    Huang, Peng
    Ren, Wenting
    Dai, Jianrong
    ICDLT 2019: 2019 3RD INTERNATIONAL CONFERENCE ON DEEP LEARNING TECHNOLOGIES, 2019, : 81 - 84
  • [26] A GPU-Based Convolutional Neural Network Approach for Image Classification
    Cengil, Emine
    Cinar, Ahmet
    Guler, Zafer
    2017 INTERNATIONAL ARTIFICIAL INTELLIGENCE AND DATA PROCESSING SYMPOSIUM (IDAP), 2017,
  • [27] A Convolutional Neural Network Based Sentiment Classification and the Convolutional Kernel Representation
    Gao, Shen
    Zhang, Huaping
    Gao, Kai
    NATURAL LANGUAGE PROCESSING AND INFORMATION SYSTEMS, NLDB 2017, 2017, 10260 : 287 - 291
  • [28] An SSVEP Classification Method Based on a Convolutional Neural Network
    Lei, Dongyang
    Dong, Chaoyi
    Ma, Pengfei
    Lin, Ruijing
    Liu, Huanzi
    Chen, Xiaoyan
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 4899 - 4904
  • [29] Female Apparel Classification based on Convolutional Neural Network
    Li, Qiao-Qi
    Zhong, Yue-Qi
    Wang, Xin
    TEXTILE BIOENGINEERING AND INFORMATICS SYMPOSIUM (TBIS) PROCEEDINGS, 2018, 2018, : 575 - 581
  • [30] Fault Text Classification Based on Convolutional Neural Network
    Wang, Lixia
    Zhang, Botao
    2020 IEEE 7TH INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND APPLICATIONS (ICIEA 2020), 2020, : 937 - 941