Vanishing and non-vanishing Dirichlet twists of L-functions of elliptic curves

被引:11
作者
Fearnley, Jack [1 ,2 ]
Kisilevsky, Hershy [1 ,2 ]
Kuwata, Masato [3 ]
机构
[1] Concordia Univ, Dept Math & Stat, Montreal, PQ H3G 1M8, Canada
[2] Concordia Univ, CICMA, Montreal, PQ H3G 1M8, Canada
[3] Chuo Univ, Fac Econ, Hachioji, Tokyo 1920393, Japan
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2012年 / 86卷
基金
加拿大自然科学与工程研究理事会;
关键词
MODULAR-FORMS; VALUES; POINTS;
D O I
10.1112/jlms/jds018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L(E/Q, s) be the L-function of an elliptic curve E defined over the rational field Q. We examine the vanishing and non-vanishing of the central values L(E, 1, chi) of the twisted L-function as chi ranges over Dirichlet characters of a given order.
引用
收藏
页码:539 / 557
页数:19
相关论文
共 37 条
[1]  
Akbary A., 1999, J. Ramanujan Math. Soc, V14, P37
[2]  
[Anonymous], IZV AKAD NAUK SSSR M
[3]  
[Anonymous], 1975, LECT NOTES MATH
[4]   KUMMER LATTICES AND K-3 SURFACES [J].
BERTIN, J .
INVENTIONES MATHEMATICAE, 1988, 93 (02) :267-284
[5]   On the modularity of elliptic curves over Q: Wild 3-adic exercises [J].
Breuil, C ;
Conrad, B ;
Diamond, F ;
Taylor, R .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (04) :843-939
[6]   NONVANISHING THEOREMS FOR L-FUNCTIONS OF MODULAR-FORMS AND THEIR DERIVATIVES [J].
BUMP, D ;
FRIEDBERG, S ;
HOFFSTEIN, J .
INVENTIONES MATHEMATICAE, 1990, 102 (03) :543-618
[7]   ADDENDUM TO A PAPER OF HARADA AND LANG [J].
CONNELL, I .
JOURNAL OF ALGEBRA, 1992, 145 (02) :463-467
[8]   On the vanishing of twisted L-functions of elliptic curves [J].
David, C ;
Fearnley, J ;
Kisilevsky, H .
EXPERIMENTAL MATHEMATICS, 2004, 13 (02) :185-198
[9]  
David Chantal, 2007, London Math. Soc. Lecture Note Ser., V341, P247, DOI [10.1017/cbo9780511735158.016, DOI 10.1017/CBO9780511735158.016]
[10]  
GOLDFELD D, 1979, LECT NOTES MATH, V751, P108