Reduction of superintegrable systems: The anisotropic harmonic oscillator

被引:57
作者
Rodriguez, Miguel A. [1 ]
Tempesta, Piergiulio [1 ]
Winternitz, Pavel [2 ]
机构
[1] Univ Complutense, Dept Fis Teor 2, Fac Fis, E-28040 Madrid, Spain
[2] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
来源
PHYSICAL REVIEW E | 2008年 / 78卷 / 04期
关键词
D O I
10.1103/PhysRevE.78.046608
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce a 2N-parametric family of maximally superintegrable systems in N dimensions, obtained as a reduction of an anisotropic harmonic oscillator in a 2N-dimensional configuration space. These systems possess closed bounded orbits and integrals of motion which are polynomial in the momenta. They generalize known examples of superintegrable models in the Euclidean plane.
引用
收藏
页数:6
相关论文
共 35 条
[1]  
Abraham R., 1978, Foundations of mechanics
[2]  
[Anonymous], 1974, Reports on Mathematical Physics, V5, P121, DOI 10.1016/0034-4877(74)90021-4
[3]  
AROV DZ, 1978, FUNCTIONAL ANAL APPL, V12, P133
[4]   On the theory of the hydrogen atom. [J].
Bargmann, V. .
ZEITSCHRIFT FUR PHYSIK, 1936, 99 (7-8) :576-582
[5]  
BERTRAND J, 1873, SEANCES ACAD SCI, V77, P849
[6]   Reduction procedures in classical and quantum mechanics [J].
Carinena, Jose F. ;
Clemente-Gallardo, Jesus ;
Marmo, Giuseppe .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2007, 4 (08) :1363-1403
[7]   INTEGRABLE SYSTEMS BASED ON SU(P,Q) HOMOGENEOUS MANIFOLDS [J].
DELOLMO, MA ;
RODRIGUEZ, MA ;
WINTERNITZ, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (11) :5118-5139
[8]  
DEMKOV YN, 1963, SOV PHYS JETP-USSR, V17, P1349
[9]  
Drach J., 1935, C. R. Acad. Sci. Paris, V200, P22, DOI DOI 10.21136/CPMF.1935.121249
[10]  
Englefield M. J., 1972, GROUP THEORY COULOMB