Quantitative spatial magnetization distribution in iron oxide nanocubes and nanospheres by polarized small-angle neutron scattering

被引:95
作者
Disch, S. [1 ,2 ]
Wetterskog, E. [3 ]
Hermann, R. P. [1 ,2 ,4 ]
Wiedenmann, A. [5 ]
Vainio, U. [6 ]
Salazar-Alvarez, G. [3 ]
Bergstrom, L. [3 ]
Brueckel, Th [1 ,2 ]
机构
[1] Forschungszentrum Julich, JCNS, D-52425 Julich, Germany
[2] Forschungszentrum Julich, JARA FIT, PGI, D-52425 Julich, Germany
[3] Stockholm Univ, Arrhenius Lab, Dept Mat & Environm Chem, S-10691 Stockholm, Sweden
[4] Univ Liege, Fac Sci, B-4000 Liege, Belgium
[5] ILL, F-38042 Grenoble, France
[6] DESY, HASYLAB, D-22607 Hamburg, Germany
来源
NEW JOURNAL OF PHYSICS | 2012年 / 14卷
关键词
SURFACE ANISOTROPY; GAMMA-FE2O3; NANOPARTICLES; POROUS-GLASS; MAGHEMITE; NANOCRYSTALS; SUPERLATTICES; DISORDER; PHASE;
D O I
10.1088/1367-2630/14/1/013025
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By means of polarized small-angle neutron scattering, we have resolved the long-standing challenge of determining the magnetization distribution in magnetic nanoparticles in absolute units. The reduced magnetization, localized in non-interacting nanoparticles, indicates strongly particle shape-dependent surface spin canting with a 0.3(1) and 0.5(1) nm thick surface shell of reduced magnetization found for similar to 9 nm nanospheres and similar to 8.5 nm nanocubes, respectively. Further, the reduced macroscopic magnetization in nanoparticles results not only from surface spin canting, but also from drastically reduced magnetization inside the uniformly magnetized core as compared to the bulk material. Our microscopic results explain the low macroscopic magnetization commonly found in nanoparticles.
引用
收藏
页数:11
相关论文
共 39 条
[1]   Magnetic field-induced assembly of oriented superlattices from maghemite nanocubes [J].
Ahniyaz, Anwar ;
Sakamoto, Yasuhiro ;
Bergstrom, Lennart .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (45) :17570-17574
[2]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[3]  
[Anonymous], 2002, Model selection and multimodel inference: a practical informationtheoretic approach
[4]   Colloquium:: Opportunities in nanomagnetism [J].
Bader, SD .
REVIEWS OF MODERN PHYSICS, 2006, 78 (01) :1-15
[5]   Magnetic order in γ-Fe2O3 nanoparticles:: a XMCD study [J].
Brice-Profeta, S ;
Arrio, MA ;
Tronc, E ;
Menguy, N ;
Letard, I ;
Moulin, CCD ;
Noguès, M ;
Chanéac, C ;
Jolivet, JP ;
Sainctavit, P .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2005, 288 :354-365
[6]   Magnetic dead layer in ferromagnetic manganite nanoparticles [J].
Curiale, J. ;
Granada, M. ;
Troiani, H. E. ;
Sanchez, R. D. ;
Leyva, A. G. ;
Levy, P. ;
Samwer, K. .
APPLIED PHYSICS LETTERS, 2009, 95 (04)
[7]   Spin Canting of Maghemite Studied by NMR and In-Field Mossbauer Spectrometry [J].
Daou, T. Jean ;
Greneche, Jean-Marc ;
Lee, Seong-Joo ;
Lee, Soonchil ;
Lefevre, Christophe ;
Begin-Colin, Sylvie ;
Pourroy, Genevieve .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (19) :8794-8799
[8]   Enhanced grain surface effect on magnetic properties of La0.5Gd0.2Sr0.3MnO3 nanoparticles:: A comparison with bulk counterpart [J].
Dey, P. ;
Nath, T. K. ;
Banerjee, A. .
APPLIED PHYSICS LETTERS, 2007, 91 (01)
[9]   Magnetic ordering and phase transition in MnO embedded in a porous glass [J].
Golosovsky, IV ;
Mirebeau, I ;
André, G ;
Kurdyukov, DA ;
Kumzerov, YA ;
Vakhrushev, SB .
PHYSICAL REVIEW LETTERS, 2001, 86 (25) :5783-5786
[10]   Diffraction studies of the crystalline and magnetic structures of γ-Fe2O3 iron oxide nanostructured in porous glass [J].
Golosovsky, IV ;
Tovar, M ;
Hoffman, U ;
Mirebeau, I ;
Fauth, F ;
Kurdyukov, DA ;
Kumzerov, YA .
JETP LETTERS, 2006, 83 (07) :298-301