共 3 条
Markov-switching multifractal models as another class of random-energy-like models in one-dimensional space
被引:2
|作者:
Saakian, David B.
[1
,2
,3
]
机构:
[1] Acad Sinica, Inst Phys, Taipei 11529, Taiwan
[2] Yerevan Phys Inst Fdn, AI Alikhanyan Natl Sci Lab, Yerevan 375036, Armenia
[3] Natl Taiwan Univ, Div Phys, Natl Ctr Theoret Sci, Taipei 10617, Taiwan
来源:
PHYSICAL REVIEW E
|
2012年
/
85卷
/
03期
关键词:
PROBABILITY-DISTRIBUTION;
STOCHASTIC VOLATILITY;
PARTITION-FUNCTION;
ASSET RETURNS;
POLYMERS;
EXPONENTS;
D O I:
10.1103/PhysRevE.85.031142
中图分类号:
O35 [流体力学];
O53 [等离子体物理学];
学科分类号:
070204 ;
080103 ;
080704 ;
摘要:
We map the Markov-switching multifractal model (MSM) onto the random energy model (REM). The MSM is, like the REM, an exactly solvable model in one-dimensional space with nontrivial correlation functions. According to our results, four different statistical physics phases are possible in random walks with multifractal behavior. We also introduce the continuous branching version of the model, calculate the moments, and prove multiscaling behavior. Different phases have different multiscaling properties.
引用
收藏
页数:6
相关论文