Conditioning and time representation in long short-term memory networks

被引:9
作者
Rivest, Francois [1 ,2 ]
Kalaska, John F. [3 ]
Bengio, Yoshua [4 ]
机构
[1] Royal Mil Coll Canada, Dept Math & Comp Sci, Stn Forces, Kingston, ON K7K 7B4, Canada
[2] Queens Univ, Ctr Neurosci Studies, Kingston, ON, Canada
[3] Univ Montreal, Dept Physiol, Montreal, PQ H3C 3J7, Canada
[4] Univ Montreal, Dept Comp Sci & Operat Res, Montreal, PQ, Canada
关键词
Time representation learning; Temporal-difference learning; Long short-term memory networks; Dopamine; Conditioning; Reinforcement learning; PARAMETRIC WORKING-MEMORY; MONKEY DOPAMINE NEURONS; REWARD-PREDICTION; PREMOTOR CORTEX; MODEL; RESPONSES; HIPPOCAMPUS; INTERVALS; DYNAMICS; STIMULUS;
D O I
10.1007/s00422-013-0575-1
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Dopaminergic models based on the temporal-difference learning algorithm usually do not differentiate trace from delay conditioning. Instead, they use a fixed temporal representation of elapsed time since conditioned stimulus onset. Recently, a new model was proposed in which timing is learned within a long short-term memory (LSTM) artificial neural network representing the cerebral cortex (Rivest et al. in J Comput Neurosci 28(1):107-130, 2010). In this paper, that model's ability to reproduce and explain relevant data, as well as its ability to make interesting new predictions, are evaluated. The model reveals a strikingly different temporal representation between trace and delay conditioning since trace conditioning requires working memory to remember the past conditioned stimulus while delay conditioning does not. On the other hand, the model predicts no important difference in DA responses between those two conditions when trained on one conditioning paradigm and tested on the other. The model predicts that in trace conditioning, animal timing starts with the conditioned stimulus offset as opposed to its onset. In classical conditioning, it predicts that if the conditioned stimulus does not disappear after the reward, the animal may expect a second reward. Finally, the last simulation reveals that the buildup of activity of some units in the networks can adapt to new delays by adjusting their rate of integration. Most importantly, the paper shows that it is possible, with the proposed architecture, to acquire discharge patterns similar to those observed in dopaminergic neurons and in the cerebral cortex on those tasks simply by minimizing a predictive cost function.
引用
收藏
页码:23 / 48
页数:26
相关论文
共 50 条
  • [31] Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory
    Lopez, Erick
    Valle, Carlos
    Allende, Hector
    Gil, Esteban
    Madsen, Henrik
    ENERGIES, 2018, 11 (03)
  • [32] Predicting Surface Air Temperature Using Convolutional Long Short-Term Memory Networks
    Wagle, Sanket
    Uttamani, Saral
    Dsouza, Sasha
    Devadkar, Kailas
    ICCCE 2019: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND CYBER-PHYSICAL ENGINEERING, 2020, 570 : 183 - 188
  • [33] Global ionospheric TEC short-term prediction by combing semiparametric and long-short term memory networks method
    Luo XiaoMin
    Cao GuangYin
    Pan Xiong
    Bian ShaoFeng
    Li Yang
    Zhang NuYan
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2023, 66 (05): : 1807 - 1819
  • [34] Synchronization of chaotic systems and long short-term memory networks by sharing a single variable
    Zhang, Kai
    Chen, Xiaolu
    Weng, Tongfeng
    Wang, Hao
    Yang, Huijie
    Gu, Changgui
    MODERN PHYSICS LETTERS B, 2021, 35 (06):
  • [35] Adaptive Clustering Long Short-Term Memory Network for Short-Term Power Load Forecasting
    Qi, Yuanhang
    Luo, Haoyu
    Luo, Yuhui
    Liao, Rixu
    Ye, Liwei
    ENERGIES, 2023, 16 (17)
  • [36] Long Short-Term Memory (LSTM) Deep Neural Networks in Energy Appliances Prediction
    Kouziokas, Georgios N.
    2019 PANHELLENIC CONFERENCE ON ELECTRONICS AND TELECOMMUNICATIONS (PACET2019), 2019, : 162 - 166
  • [37] Short-Term Memory in Networks of Dissociated Cortical Neurons
    Dranias, Mark R.
    Ju, Han
    Rajaram, Ezhilarasan
    VanDongen, Antonius M. J.
    JOURNAL OF NEUROSCIENCE, 2013, 33 (05) : 1940 - 1953
  • [38] Long-term inflow forecast using meteorological data based on long short-term memory neural networks
    Zhao, Hongye
    Liao, Shengli
    Song, Yitong
    Fang, Zhou
    Ma, Xiangyu
    Zhou, Binbin
    JOURNAL OF HYDROINFORMATICS, 2024, 26 (05) : 954 - 971
  • [39] Predictive model for peak ground velocity using long short-term memory networks
    Tao, Dongwang
    Zhang, Haifeng
    Li, Shanyou
    Lu, Jianqi
    Xie, Zhinan
    Ma, Qiang
    JOURNAL OF SEISMOLOGY, 2024, : 221 - 240
  • [40] Estimating Travel Time for Autonomous Mobile Robots through Long Short-Term Memory
    Matei, Alexandru
    Precup, Stefan-Alexandru
    Circa, Dragos
    Gellert, Arpad
    Zamfirescu, Constantin-Bala
    MATHEMATICS, 2023, 11 (07)