Convergence analysis of an iterative algorithm for monotone operators

被引:118
作者
Cho, Sun Young [1 ]
Li, Wenling [2 ]
Kang, Shin Min [1 ,3 ]
机构
[1] Gyeongsang Natl Univ, Dept Math, Jinju 660701, South Korea
[2] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454000, Peoples R China
[3] Gyeongsang Natl Univ, RINS, Jinju 660701, South Korea
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2013年
关键词
inverse-strongly monotone mapping; maximal monotone operator; resolvent; strictly pseudocontractive mapping; fixed point; FIXED-POINT PROBLEMS; HYBRID PROJECTION METHODS; EQUILIBRIUM PROBLEMS; NONEXPANSIVE-MAPPINGS; WEAK-CONVERGENCE; COMMON SOLUTIONS; THEOREMS; APPROXIMATION; SEQUENCE;
D O I
10.1186/1029-242X-2013-199
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, an iterative algorithm is proposed to study some nonlinear operators which are inverse-strongly monotone, maximal monotone, and strictly pseudocontractive. Strong convergence of the proposed iterative algorithm is obtained in the framework of Hilbert spaces.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Strong Convergence of Monotone Hybrid Method for Maximal Monotone Operators and Hemirelatively Nonexpansive Mappings
    Klin-eam, Chakkrid
    Suantai, Suthep
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2009,
  • [32] Strong convergence for maximal monotone operators, relatively quasi-nonexpansive mappings, variational inequalities and equilibrium problems
    Saewan, Siwaporn
    Kumam, Poom
    Cho, Yeol Je
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2013, 57 (04) : 1299 - 1318
  • [33] ON THE CONVERGENCE OF ITERATIVE SEQUENCES FOR A FAMILY OF NONEXPANSIVE MAPPINGS AND INVERSE-STRONGLY MONOTONE MAPPINGS
    Cho, Sun Young
    Kang, Shin Min
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2011, 19 (01): : 49 - 66
  • [34] WEAK CONVERGENCE OF ITERATIVE METHODS FOR TWO ACCRETIVE OPERATORS IN BANACH SPACES
    Wang, Yuan-Heng
    Chebbi, Souhail
    Xu, Hong-Kun
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2015, 16 (10) : 1937 - 1947
  • [35] On the convergence of maximal monotone operators
    Penot, JP
    Alinescu, CZ
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (07) : 1937 - 1946
  • [36] A New Iterative Algorithm for Variational Inclusions with H-Monotone Operators
    Xia, Fu-quan
    Zhang, Qing-bang
    Zou, Yun-zhi
    [J]. THAI JOURNAL OF MATHEMATICS, 2012, 10 (03): : 605 - 616
  • [37] Strong convergence of an iterative method for pseudo-contractive and monotone mappings
    Zegeye, Habtu
    Shahzad, Naseer
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2012, 54 (01) : 173 - 184
  • [38] Strong convergence of a parallel iterative algorithm in a reflexive Banach space
    Qing, Yuan
    Lv, Songtao
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2014,
  • [39] Convergence of a proximal point algorithm for maximal monotone operators in Hilbert spaces
    Zhiqiang Wei
    Guohong Shi
    [J]. Journal of Inequalities and Applications, 2012
  • [40] A monotone projection algorithm for fixed points of nonlinear operators
    Wu, Changqun
    Sun, Lijuan
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2013,