On the structure of isentropes of polynomial maps

被引:7
作者
Bruin, Henk [1 ]
van Strien, Sebastian [2 ]
机构
[1] Univ Vienna, Fac Math, A-1090 Vienna, Austria
[2] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
来源
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL | 2013年 / 28卷 / 03期
关键词
interval maps; topological entropy; isentrope; polynomial maps; ENTROPY; MONOTONICITY;
D O I
10.1080/14689367.2013.822458
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The structure of isentropes (i.e. sets of constant topological entropy) including the monotonicity of entropy has been studied for polynomial interval maps since the 1980s. We show that isentropes of multimodal polynomial families need not be locally connected and that entropy does in general not depend monotonically on a single critical value.
引用
收藏
页码:381 / 392
页数:12
相关论文
共 27 条
[1]   TOPOLOGICAL ENTROPY [J].
ADLER, RL ;
KONHEIM, AG ;
MCANDREW, MH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 114 (02) :309-&
[2]  
Alseda L., 1993, ADV SERIES NONLINEAR
[3]  
Bowen R, 1973, T AM MATH SOC, V181, P09
[4]  
Bruin H, 2009, ARXIV09053377
[5]  
Cheraghi D, MONOTONICITY E UNPUB
[6]  
deMelo W., 1993, One-Dimensional Dynamics, V25
[7]  
Dinaburg EI., 1970, Soviet Math. Dokl, V11, P13
[8]  
DOUADY A, 1995, NATO ADV SCI INST SE, V464, P65
[9]  
Douady A., 1984, ETUDE DYNAMIQUE POLY
[10]  
DOUADY A, 1985, ETUDE DYNAMIQUE POLY, V2