Continuous symmetries of the discrete nonlinear telegraph equation

被引:9
|
作者
Ody, MS [1 ]
Common, AK
Sobhy, MI
机构
[1] Univ Kent, Inst Math & Stat, Canterbury CT2 7NF, Kent, England
[2] Univ Kent, Elect Engn Labs, Canterbury CT2 7NT, Kent, England
关键词
D O I
10.1017/S0956792599003708
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The method of classical Lie symmetries, generalised to differential-difference equations by Quispel, Capel and Sahadevan, is applied to the discrete nonlinear telegraph equation. The symmetry reductions thus obtained are compared with analogous results for the continuous telegraph equation. Some of these 'continuous' reductions are used to provide initial data for a numerical scheme which attempts to solve the corresponding discrete equation.
引用
收藏
页码:265 / 284
页数:20
相关论文
共 50 条
  • [41] Periodic solutions for nonlinear telegraph equation via elliptic regularization
    De Araujo, G. M.
    Guzman, R. B.
    De Menezes, Silvano B.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2009, 28 (02): : 135 - 155
  • [42] The dressing chain of discrete symmetries and proliferation of nonlinear equations
    Borisov, AB
    Zykov, SA
    THEORETICAL AND MATHEMATICAL PHYSICS, 1998, 115 (02) : 530 - 541
  • [43] Computing the variable coefficient telegraph equation using a discrete eigenfunctions method
    Aloy, R.
    Casaban, M. C.
    Caudillo-Mata, L. A.
    Jodar, L.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 54 (03) : 448 - 458
  • [44] The dressing chain of discrete symmetries and proliferation of nonlinear equations
    A. B. Borisov
    S. A. Zykov
    Theoretical and Mathematical Physics, 1998, 115 : 530 - 541
  • [46] Discrete equation on a square lattice with a nonstandard structure of generalized symmetries
    R. N. Garifullin
    A. V. Mikhailov
    R. I. Yamilov
    Theoretical and Mathematical Physics, 2014, 180 : 765 - 780
  • [48] Coupled Nonlinear Schrodinger Equation: Symmetries and Exact Solutions
    Liu Ping
    Lou Sen-Yue
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2009, 51 (01) : 27 - 34
  • [49] Classical and nonclassical symmetries of the nonlinear equation with dispersion and dissipation
    Gurskii, VV
    Samsonov, AM
    Schwarz, F
    TECHNICAL PHYSICS, 2003, 48 (11) : 1359 - 1363
  • [50] Discrete Symmetries Analysis and Exact Solutions of the Inviscid Burgers Equation
    Yang, Hongwei
    Shi, Yunlong
    Yin, Baoshu
    Dong, Huanhe
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2012, 2012