Continuous symmetries of the discrete nonlinear telegraph equation

被引:9
|
作者
Ody, MS [1 ]
Common, AK
Sobhy, MI
机构
[1] Univ Kent, Inst Math & Stat, Canterbury CT2 7NF, Kent, England
[2] Univ Kent, Elect Engn Labs, Canterbury CT2 7NT, Kent, England
关键词
D O I
10.1017/S0956792599003708
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The method of classical Lie symmetries, generalised to differential-difference equations by Quispel, Capel and Sahadevan, is applied to the discrete nonlinear telegraph equation. The symmetry reductions thus obtained are compared with analogous results for the continuous telegraph equation. Some of these 'continuous' reductions are used to provide initial data for a numerical scheme which attempts to solve the corresponding discrete equation.
引用
收藏
页码:265 / 284
页数:20
相关论文
共 50 条
  • [1] Local and nonlocal symmetries for nonlinear telegraph equation
    Bluman, GW
    Temuerchaolu
    Sahadevan, R
    JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (02)
  • [2] Symmetries of the discrete nonlinear Schrodinger equation
    Heredero, RH
    Levi, D
    Winternitz, P
    THEORETICAL AND MATHEMATICAL PHYSICS, 2001, 127 (03) : 729 - 737
  • [3] Symmetries of the Discrete Nonlinear Schrödinger Equation
    R. Hernández Heredero
    D. Levi
    P. Winternitz
    Theoretical and Mathematical Physics, 2001, 127 : 729 - 737
  • [4] Symmetries of the Continuous and Discrete Krichever-Novikov Equation
    Levi, Decio
    Winternitz, Pavel
    Yamilov, Ravil I.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2011, 7
  • [5] Symmetries of the discrete Burgers equation
    Heredero, RH
    Levi, D
    Winternitz, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (14): : 2685 - 2695
  • [6] Comparing symmetries and conservation laws of nonlinear telegraph equations
    Bluman, GW
    Temuerchaolu
    JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (07)
  • [7] CONTINUOUS SYMMETRIES OF DISCRETE EQUATIONS
    LEVI, D
    WINTERNITZ, P
    PHYSICS LETTERS A, 1991, 152 (07) : 335 - 338
  • [8] Wavefront solutions of a nonlinear telegraph equation
    Gilding, B. H.
    Kersner, R.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (02) : 599 - 636
  • [9] Symmetries of the nonlinear Schrodinger equation
    Grébert, B
    Kappeler, T
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2002, 130 (04): : 603 - 618
  • [10] Model Order Reduction(MOR) of Nonlinear Telegraph Equation using Discrete Empirical Interpolation Method
    Nagaraj, S.
    Seshachalam, D.
    Nadiger, Sanath Kumar K.
    2018 3RD INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMMUNICATION, COMPUTER, AND OPTIMIZATION TECHNIQUES (ICEECCOT - 2018), 2018, : 60 - 64