We study the performance of Machine Learning (ML) classification techniques. Leveraging the theory of large deviations, we provide the mathematical conditions for a ML classifier to exhibit error probabilities that vanish exponentially, say exp(-n I), where n is the number of informative observations available for testing (or another relevant parameter, such as the size of the target in an image) and I is the error rate. Such conditions depend on the Fenchel-Legendre transform of the cumulant-generating function of the Data-Driven Decision Function (D3F, i.e., what is thresholded before the final binary decision is made) learned in the training phase. As such, the D3F and the related error rate I depend on the given training set. The conditions for the exponential convergence can be verified and tested numerically exploiting the available dataset or a synthetic dataset generated according to the underlying statistical model. Coherently with the large deviations theory, we can also establish the convergence of the normalized D3F statistic to a Gaussian distribution. Furthermore, approximate error probability curves zeta(n) exp(-n I) are provided, thanks to the refined asymptotic derivation, where zeta n represents the most representative sub-exponential terms of the error probabilities. Leveraging the refined asymptotic, we are able to compute an accurate analytical approximation of the classification performance for both the regimes of small and large values of n. Theoretical findings are corroborated by extensive numerical simulations and by the use of real-world data, acquired by an X-band maritime radar system for surveillance.
机构:
Xinjiang Med Univ, Clin Med Coll 4, Dept Med Imaging Ctr, Urumqi 830000, Xinjian, Peoples R ChinaXinjiang Med Univ, Clin Med Coll 4, Dept Med Imaging Ctr, Urumqi 830000, Xinjian, Peoples R China
Wu, Qian
Guo, Hui
论文数: 0引用数: 0
h-index: 0
机构:
Xinjiang Med Univ, Clin Med Coll 4, Dept Med Imaging Ctr, Urumqi 830000, Xinjian, Peoples R ChinaXinjiang Med Univ, Clin Med Coll 4, Dept Med Imaging Ctr, Urumqi 830000, Xinjian, Peoples R China
Guo, Hui
Li, Ruihan
论文数: 0引用数: 0
h-index: 0
机构:
Xinjiang Med Univ, Clin Med Coll 4, Dept Med Imaging Ctr, Urumqi 830000, Xinjian, Peoples R ChinaXinjiang Med Univ, Clin Med Coll 4, Dept Med Imaging Ctr, Urumqi 830000, Xinjian, Peoples R China
Li, Ruihan
Han, Jinhuan
论文数: 0引用数: 0
h-index: 0
机构:
Xinjiang Med Univ, Clin Med Coll 4, Dept Med Imaging Ctr, Urumqi 830000, Xinjian, Peoples R ChinaXinjiang Med Univ, Clin Med Coll 4, Dept Med Imaging Ctr, Urumqi 830000, Xinjian, Peoples R China
机构:
Syracuse Univ, Dept Biomed & Chem Engn, Syracuse, NY 13244 USA
Syracuse Univ, BioInspired Syracuse Inst Mat & Living Syst, Syracuse, NY USASyracuse Univ, Dept Biomed & Chem Engn, Syracuse, NY 13244 USA
Kowalczewski, Andrew
Sakolish, Courtney
论文数: 0引用数: 0
h-index: 0
机构:
Texas A&M Univ, Dept Vet Integrat Biosci, College Stn, TX USASyracuse Univ, Dept Biomed & Chem Engn, Syracuse, NY 13244 USA
Sakolish, Courtney
Hoang, Plansky
论文数: 0引用数: 0
h-index: 0
机构:
Syracuse Univ, Dept Biomed & Chem Engn, Syracuse, NY 13244 USA
Syracuse Univ, BioInspired Syracuse Inst Mat & Living Syst, Syracuse, NY USASyracuse Univ, Dept Biomed & Chem Engn, Syracuse, NY 13244 USA
Hoang, Plansky
Liu, Xiyuan
论文数: 0引用数: 0
h-index: 0
机构:
Syracuse Univ, Dept Mech & Aerosp Engn, Syracuse, NY USASyracuse Univ, Dept Biomed & Chem Engn, Syracuse, NY 13244 USA
Liu, Xiyuan
Jacquir, Sabir
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Saclay, CNRS, Inst Neurosci Paris Saclay, Gif Sur Yvette, FranceSyracuse Univ, Dept Biomed & Chem Engn, Syracuse, NY 13244 USA
Jacquir, Sabir
Rusyn, Ivan
论文数: 0引用数: 0
h-index: 0
机构:
Texas A&M Univ, Dept Vet Integrat Biosci, College Stn, TX USASyracuse Univ, Dept Biomed & Chem Engn, Syracuse, NY 13244 USA
Rusyn, Ivan
Ma, Zhen
论文数: 0引用数: 0
h-index: 0
机构:
Syracuse Univ, Dept Biomed & Chem Engn, Syracuse, NY 13244 USA
Syracuse Univ, BioInspired Syracuse Inst Mat & Living Syst, Syracuse, NY USASyracuse Univ, Dept Biomed & Chem Engn, Syracuse, NY 13244 USA