Facile Synthesis of Surface-Modified Nanosized α-Fe2O3 as Efficient Visible Photocatalysts and Mechanism Insight

被引:81
作者
Sun, Wanting [1 ]
Meng, Qingqiang [1 ]
Jing, Liqiang [1 ]
Liu, Dening [1 ]
Cao, Yue [1 ]
机构
[1] Heilongjiang Univ, Sch Chem & Mat Sci, Minist Educ, Key Lab Funct Inorgan Mat Chem, Harbin 150080, Peoples R China
关键词
LITHIUM ION BATTERIES; PHOTOGENERATED CHARGES; HYDROGEN-PRODUCTION; THIN-FILMS; HETEROGENEOUS PHOTOCATALYSIS; NANOSTRUCTURED ALPHA-FE2O3; PHOSPHATE ADSORPTION; AQUEOUS-SOLUTION; MODIFIED TIO2; WATER;
D O I
10.1021/jp309599d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, alpha-Fe2O3 nanoparticles with high visible photocatalytic activity for degrading liquid-phase phenol and gas-phase acetaldehyde have been controllably synthesized by a simple one-pot water-organic two-phase separated hydrolysis-solvothermal (HST) method. Further, the visible photocatalytic activity is enhanced greatly after modification with a proper amount of phosphate. The enhanced activity is attributed to the increased charge separation by promoting photogenerated electrons captured by the adsorbed O-2 by means of the atmosphere-controlled surface photovoltage spectra, along with the photoelectrochemical I-V curves. On the basis of the O-2 temperature-programmed desorption measurements, it is suggested for the first time that the promotion effect results from the increase in the amount of O-2 adsorbed on the surfaces of Fe2O3 by the partial substitution of -Fe-OH with -Fe-O-P-OH surface ends. Expectedly, the positive strategy would be also applicable to other visible-response nanosized oxides as efficient photocatalysts. This work will provide us with a feasible route to synthesize oxide-based nanomaterials with good photocatalytic performance.
引用
收藏
页码:1358 / 1365
页数:8
相关论文
共 67 条
[1]   Process Map for the Hydrothermal Synthesis of α-Fe2O3 Nanorods [J].
Almeida, Trevor P. ;
Fay, Mike ;
Zhu, Yanqiu ;
Brown, Paul D. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (43) :18689-18698
[2]   ATR-FTIR spectroscopic investigation on phosphate adsorption mechanisms at the ferrihydrite-water interface [J].
Arai, Y ;
Sparks, DL .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2001, 241 (02) :317-326
[3]   Physical and photo-electrochemical characterizations of α-Fe2O3. Application for hydrogen production [J].
Boudjemaa, A. ;
Boumaza, S. ;
Trari, M. ;
Bouarab, R. ;
Bouguelia, A. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (10) :4268-4274
[4]   Hierarchically nanostructured (α-Fe2O3 hollow spheres:: Preparation, growth mechanism, photocatalytic property, and application in water treatment [J].
Cao, Shao-Wen ;
Zhu, Ying-Jie .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (16) :6253-6257
[5]   Enhanced photocatalytic activity of nc-TiO2 by promoting photogenerated electrons captured by the adsorbed oxygen [J].
Cao, Yue ;
Jing, Liqiang ;
Shi, Xin ;
Luan, Yunbo ;
Durrant, James R. ;
Tang, Junwang ;
Fu, Honggang .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (24) :8530-8536
[6]   Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight:: Nanostructure-directing effect of Si-doping [J].
Cesar, I ;
Kay, A ;
Martinez, JAG ;
Grätzel, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (14) :4582-4583
[7]   Synthesis, Multi-Nonlinear Dielectric Resonance, and Excellent Electromagnetic Absorption Characteristics of Fe3O4/ZnO Core/Shell Nanorods [J].
Chen, Yu-Jin ;
Zhang, Fan ;
Zhao, Guo-gang ;
Fang, Xiao-yong ;
Jin, Hai-Bo ;
Gao, Peng ;
Zhu, Chun-Ling ;
Cao, Mao-Sheng ;
Xiao, G. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (20) :9239-9244
[8]   Phosphate adsorption onto TiO2 from aqueous solutions:: An in situ internal reflection infrared spectroscopic study [J].
Connor, PA ;
McQuillan, AJ .
LANGMUIR, 1999, 15 (08) :2916-2921
[9]   Activation Energies for the Rate-Limiting Step in Water Photooxidation by Nanostructured α-Fe2O3 and TiO2 [J].
Cowan, Alexander J. ;
Barnett, Christopher J. ;
Pendlebury, Stephanie R. ;
Barroso, Monica ;
Sivula, Kevin ;
Graetzel, Michael ;
Durrant, James R. ;
Klug, David R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (26) :10134-10140
[10]  
CVETANOVIC RJ, 1972, CATALY REV, V6, P21, DOI 10.1080/01614947208078690