Solvable Lie algebras with naturally graded nilradicals and their invariants

被引:36
作者
Ancochea, JM [1 ]
Campoamor-Stursberg, R [1 ]
Vergnolle, LG [1 ]
机构
[1] Univ Complutense Madrid, Fac CC Matemat, Dept Geometria & Topol, E-28040 Madrid, Spain
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2006年 / 39卷 / 06期
关键词
D O I
10.1088/0305-4470/39/6/008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The indecomposable solvable Lie algebras with graded nilradical of maximal nilindex and a Heisenberg subalgebra of codimension one are analysed, and their generalized Casimir invariants are calculated. It is shown that rank one solvable algebras have a contact form, which implies the existence of an associated dynamical system. Moreover, due to the structure of the quadratic Casimir operator of the nilradical, these algebras contain a maximal non-abelian quasi-classical Lie algebra of dimension 2n - 1, indicating that gauge theories (with ghosts) are possible on these subalgebras.
引用
收藏
页码:1339 / 1355
页数:17
相关论文
共 29 条
[1]  
ARKHANGELSKII AA, 1979, MAT SBORNIK, V108, P134
[2]  
Barut A., 1980, THEORY GROUP REPRESE
[3]   ON NUMBER OF CASIMIR OPERATORS ASSOCIATED WITH ANY LIE GROUP [J].
BELTRAMETTI, EG ;
BLASI, A .
PHYSICS LETTERS, 1966, 20 (01) :62-+
[4]   On Sasakian-Einstein geometry [J].
Boyer, CP ;
Galicki, K .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2000, 11 (07) :873-909
[5]   Some remarks concerning the invariants of rank one solvable real Lie algebras [J].
Campoamor-Stursberg, R .
ALGEBRA COLLOQUIUM, 2005, 12 (03) :497-518
[6]   An alternative interpretation of the Beltrametti-Blasi formula by means of differential forms [J].
Campoamor-Stursberg, R .
PHYSICS LETTERS A, 2004, 327 (2-3) :138-145
[7]  
Campoamor-Stursberg R, 2003, ACTA PHYS POL B, V34, P3901
[8]   On the invariants of some solvable rigid Lie algebras [J].
Campoamor-Stursberg, R .
JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (02) :771-784
[9]  
Das A., 1989, INTEGRABLE MODELS
[10]  
KRUGLIKOV B, 1998, P STEKLOV MATH I, V221, P232